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Background and Motivation Results |

Normalizing flows [1]: represent a probability distribution with an
iInvertible transformation of a base distribution to a target distribution
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Neural ODEs [2]: represent the invertible transformation as an ODE
ox
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Ot e Evaluate with kernelized Stein discrepancy [5,6] %0.6
(also appears in Stein operator, Fokker-Planck equation, and continuity @ Flow-perturbed samples closely match 80.4-
equation for conservation of mass) perturbed density across a range of scales 2
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Typically, we know initial p,(x) and final samples x(T), and solve for v Future Directions 0.0
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by maximum likelihood. What if instead, we knew p(x) and infinitesimal
change dp(x)/dt? How would we solve for v then?

Applications: Accelerating convergence when
sampling and optimization are coupled:
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Method v is underdetermined - restrict pv to min By [ f5(x)] X ~ Dg (X)
» Op(x) be lntegralole 0

pix) +e e Variational Quantum Monte Carlo

N Vu(x) = p(x)v(x)

Then can solve Poisson equation

T

Equivalent to treating pv as electric field created by particles with
charge dp(x)/dt. Can be solved empirically by Coulomb kernel:
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Unlike Stein variational gradient descent [3] there is only one possible

o f=energy, p=wavefunction
e Policy Gradient Methods
o f=value, p=policy

X X + €v(X) e Variational Inference

o f=ELBQ, p=variational posterior
Scaling: How to beat the curse of dimensionality
e How do we get around the need for the
partition function when we only have an

p(X;)v(x;) =

unnormalized distribution?
e How do we get around the r"' dropoff in field

L .
kernel, which is known to be optimal for related applications [4]. strength in high dimensions:

Kernelized Stein Discrepancy between
particles and perturbed density
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