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LAPLACIAN EIGENMAPS

TRANSFORMED FACES RESULTS

NORB RESULTS

PAPER

  result = eigvec[:, :1]
  m = eigvec.shape[1]
  flann = pyflann.FLANN()
  ind = np.arange(eigvec.shape[0])[:, None][:, (k+1)*[0]]
  i = 0
  while i < m-1:
    inds, dists = flann.nn(result, result, num_neighbors=k+1,
                           algorithm='kdtree')
    for j in range(i+1, m):
      i = j
      score = np.mean(np.sqrt(
          (eigvec[inds[dists != 0], i] -
           eigvec[ind[dists != 0], i])**2))
      if score > thresh:
        result = np.concatenate((result,
                                 eigvec[:, i:i+1]),
                                axis=1)
        break
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Above: samples from dataset of a face image 
translated, rotated and scaled.

Middle: Comparison of Minimally Redundant 
Laplacian Eigenmaps (MR-LEM) and CCI-VAE 
[Burgess et al 2017] on data with 
transformations enumerated on a grid. MR-LEM 
recovers the true topology of the rotation 
transformation while CCI-VAE does not.

RIght: CCI-VAE and MR-LEM on data with 
transformation sampled from a Gaussian. 
MR-LEM still disentangles the transformations

Detail of first two embedding dimensions of NORB.
Dim 1 encodes lighting and elevation hierarchically. 

Classification performance on full small NORB dataset. 
Filtering eigenvectors improves 1-NN classification.
Comparison against Capsule Networks [Hinton et al 2018]
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Collapsed representations

Comparison between LEM with and without filtering 
by redundancy on one plane object from NORB.

Without filtering, the first 3 dimensions are 
redundant and one lighting condition (green) is 
collapsed to a single point across the first >20 
dimensions.

With filtering, the collapsed dimensions are 
removed and dimensions 5 and 6 expand out the 
unusual lighting condition. The angular component 
of dimensions 2-4 encode azimuth, while the radial 
components encode elevation.

Can disentangle lighting, azimuth and elevation 
using less than 1000 samples.

Graph Laplacian gives instantaneous rate of diffusion on a graph.

Lowest eigenvectors are slowest decaying modes of this diffusion.

Laplacian eigenmaps constructs an embedding for points in a 
dataset by building nearest neighbors graph between data and 
using lowest eigenvectors of graph Laplacian as embedding vectors

Graph Laplacian Operator

Belkin and Niyogi 2002

Matrix Form

Normalized Laplacian

Eigenmaps Embedding Vectors

EVENLY SCALED DATA

UNEVENLY SCALED DATA

Redundant

Redundant

Lowest eigenvectors are not best eigenvectors for constructing a 
coordinate system if the data are not evenly scaled in different directions

But most real world data is not evenly scaled in all directions!

Eigenvectors may be orthogonal but still predictable, e.g.
sin(2x) and {sin(x), cos(x)}

Instead of using all lowest eigenvectors, precompute lowest eigenvectors 
and filter based on predictability/redundancy. Only unpredictable 
eigenvectors are added to embedding.

Manifold Learning
Nonparametric

(LLE, IsoMap, Laplacian Eigenmaps…)
Parametric

(autoencoders, GANs…)

● Learn by eigendecomposition
● Exactly solvable
● Data efficient
● Extend to held-out data by Nyström 

method [Bengio et al 2004]
● Scales O(n) in space
● Scales ~O(nlogn) in time

● Learn by gradient descent
● Not exactly solvable, but still works well in 

practice
● Data hungry
● Extend to held-out data trivially
● Scales O(1) in space
● Scales ~O(n) in time

One common failure mode of nonparametric manifold learning is collapsed representations, where the embedding does not fill the full 
space [Hadsell et al 2006]. We show that collapsed representations are due to the way that embedding vectors are chosen from the 
eigenvectors of the Gram matrix. Rather than choosing the smallest eigenvectors, embeddings should be chosen which have small 
eigenvalue and are minimally redundant - no dimension of the embedding should be predictable from any other. 

Filtering out redundant vectors from Laplacian eigenmaps produces much more meaningful embeddings, and the remaining embedding 
vectors are often automatically disentangled, much like embeddings learned by autoencoders like β-VAE [Higgins et al 2017]. Thus 
nonparametric manifold learning can be a promising method for unsupervised disentangling without having to learn a generative model.


