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Designing models for data with latent graph- or manifold-structure



What this tutorial is about

Discovering latent manifold structure in data



What this tutorial is not about

F(0) = E, [Velogp(m|9)V010gp($|9>T]

Orp1 < 0 + f‘lvelogp(wtlﬂ)

Information geometry - the manifold structure of parameter space
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Spectral Learning

Any learning algorithm where the usual tools (SGD, EM, MCMC...) are
replaced with eigendecomposition or SVD

Solves a nonconvex optimization exactly!
A =3AD"
min Tr(®TAD)

dTo=I

Functions on R™ can be decomposed with Fourier basis. Spectral
analysis generalizes Fourier analysis to manifolds and graphs



What is this good for?

B Bottom loop articulation

Top arch articulation
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Tenenbaum, De Silva and Langford 2000



What is this good for?

A.

Outer Walls
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Simulated Ebvironment

Simulated Environment 3-d View (to scale)

-8 -4 0 4 8 .3 Learned Representation
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Learned Subspace Mapped to

Geometric Space

Boots, Siddiqi and Gordon 2011
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Theory
Graphs
Manifolds and Differential Geometry
Spectral Theory
The Geometry of Data
Classic Manifold Learning
Embedding Hierarchies in Hyperbolic Space
Analyzing the Geometry of Deep Generative Models
Spectral Deep Learning
Convolutions on Graphs and Manifolds
Spectral Graph Convolutional Neural Networks

Inference in Spectral Learning with Deep Networks
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Part la

Graph Theory (in three slides)



Graphs

Weighted undirected graph G with vertices
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Graphs

Weighted undirected graph G with vertices
V=A{1,...,n}, edges E CV x V and edge
weights w;; > 0 for (i,j) € £

Functions over the vertices
L2(V) ={f:V — R} represented as
vectors f = (f1,..., fn)

Inner product

<fa Zfzgz—fT

%

fi



Shortest paths on graphs
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19, --.,1k € V from source ig to sink iy that
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If dist[j] is less than before, set i as parent
node of j in shortest path tree.
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Shortest paths on graphs

Dijkstra's Algorithm: Find sequence
19, --.,1k € V from source ig to sink iy that
minimizes >, wi,i, .,

Create queue of active nodes and
shortest-path tree, starting from source

Remove active node 7 closest to source,
compute distance to neighbors
diSt[j] = distm + Wij -

If dist[j] is less than before, set i as parent
node of j in shortest path tree.

Stop when sink is reached. Path to the root
of the tree is the shortest path.

Complexity: O(€] + |V|log|V|)
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Graph Laplacian

Unnormalized Laplacian A : L2(V) — L2(V)
A = Y wiylfi— 1)
ji(i,5)€€

(up to scale) difference between f and its

local average

Represented as a positive semi-definite n x n
matrix A = D — W where W = (w;;) and
D = diag(_,; wij)
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Graph Laplacian

f.
Unnormalized Laplacian A : L2(V) — L2(V) y

A = Y wiylfi— 1) ]
ji(i,5)€€
(up to scale) difference between f and its

local average

Represented as a positive semi-definite n x n
matrix A = D — W where W = (w;;) and
D = diag(_,; wij)

Dirichlet energy of f
1 n
||f\|(2; =5 Z wij(fi — f;)? = fTAf
ij=1

measures the smoothness of f (how fast it changes locally)



Part Ib

Manifolds and Differential Geometry



Riemannian manifolds

Manifold X = locally flat space (no
non-differentiable corners)

Tangent plane T, X = local Euclidean
representation of manifold X around x
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Riemannian manifolds

Manifold X = locally flat space (no
non-differentiable corners)

Tangent plane T, X = local Euclidean
representation of manifold X around x

Riemannian metric describes the local
intrinsic structure at x

<', '>TIX : TZX X TmX — R

Scalar fields f : X — R and vector
fields F': X - TX

Inner products
Faheeo = [ Fag(e)ds

(F,G)r2(1x) Z/X(F(x),G(x»medx
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Velocity 4(-) : [0,1] = T, X = local
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Shortest paths on manifolds

Curve 7(+) : [0,1] = X = smooth path
along manifold

Velocity 4(-) : [0,1] = T, X = local
direction of change along the curve

Curve energy integrates length at constant
velocity

st = [ (afolo

>Tv(t)X

Geodesic shortest curve between points

Geodesic is a path such that the velocities are locally parallel




Parallel Transport

Connection T';,(F, G): infinitesimal
change to vector F' € T, X that keeps
it locally parallel when moved in the
direction G € T, X.
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Parallel Transport

Connection T';,(F, G): infinitesimal
change to vector F' € T, X' that keeps
it locally parallel when moved in the
direction G € T, X.

Parallel transport Sequence of vectors
F(t) € Ty4)X along curve v that are
all locally parallel.

(1) + Ty (F(8),5(8) = 0
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Parallel transport:
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Parallel transport:

F(t) + Ty (F (), 7(t) = 0

The geodesic equation:
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Geodesic equation

Parallel transport: \/, \ .

. / \
B(#) + Ty (F(1),4(5) = 0 N \
The geodesic equation: \i

5(8) + Ty (3(1), 4(8)) = 0 N

A geodesic is a curve such that if you parallel transport its velocity at a
point along itself, the vector always remains tangent to the curve




Geodesic equation

Parallel transport:
F<t) + F’y(t) (F(t)a ’V(t)) =0
The geodesic equation:

W(t) + F'y(t) (’Y(t)77(t)) =0

A geodesic is a curve such that if you parallel transport its velocity at a
point along itself, the vector always remains tangent to the curve

Solve numerically on meshes with fast marching method

Kimmel and Sethian 1998



Manifold Laplacian

Laplacian A : L2(X) — L?(X)
Af(z) = —divVf(z)

where gradient V: L2(X)— L?(TX)
and divergence div: L?(TX)— L?(X)
are adjoint operators

<F, Vf>L2(TX) = <—CliVF7 f>L2(X)
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Manifold Laplacian

Laplacian A : L2(X) — L?(X)
Af(z) = —divVf(z)

where gradient V: L2(X)— L?(TX)
and divergence div: L?(TX) — L?(X)
are adjoint operators

(F, Vf>L2(TX) = <—diVF7 f>L2(X)

Laplacian is self-adjoint
(Af, rzxy = (f, Af) L2y

Continuous limit of graph Laplacian
under some conditions

Dirichlet energy of f
R CINETE

measures the smoothness of f (how fast it changes locally)



Part Ic

Spectral Theory for
Graphs and Manifolds



Orthogonal bases on graphs
Find the smoothest orthogonal basis {¢1,...,¢,} C L?(V)
min Epi(y1) st [lon] =1
n;in Epi(Yr) st okl =1, k=2,3,...n

¢ L span{¢i,...,dp_1}



Orthogonal bases on graphs
Find the smoothest orthogonal basis {¢1,...,¢,} C L?(V)

min trace(®' A®) st. @' =1
BeRmxn



Orthogonal bases on graphs
Find the smoothest orthogonal basis {¢1,...,¢,} C L?(V)
min trace(®' A®) st. @' =1

PR X"

Solution: @ = Laplacian eigenvectors



Laplacian eigenvectors and eigenvalues
Eigendecomposition of a graph Laplacian
A=3ADT

where ® = (¢, ..., ¢,) are orthogonal eigenvectors (® ' ® = I) and
A = diag()\q, ..., A,) the corresponding non-negative eigenvalues



Laplacian eigenvectors and eigenvalues

Eigendecomposition of a graph Laplacian

A=2AD"
where ® = (¢, ..., ¢,) are orthogonal eigenvectors (® ' ® = I) and
A = diag()\q, ..., A,) the corresponding non-negative eigenvalues
+1
ol
—1 |
—T 0 +m

First eigenfunctions of 1D Euclidean Laplacian



Laplacian eigenvectors and eigenvalues
Eigendecomposition of a graph Laplacian
A=3ADT

where ® = (¢, ..., ¢,) are orthogonal eigenvectors (® ' ® = I) and
A = diag()\q, ..., A,) the corresponding non-negative eigenvalues

First eigenfunctions of a graph Laplacian



Laplacian eigenvectors and eigenvalues
Eigendecomposition of a graph Laplacian
A =3ADT

where ® = (¢, ..., ¢,) are orthogonal eigenvectors (® ' ® = I) and
A = diag()\q, ..., A,) the corresponding non-negative eigenvalues

P2 o3

First eigenfunctions of a manifold Laplacian



Fourier analysis on Euclidean spaces

A function f : [-m, 7] — R can be written as a Fourier series

E —1k:ac dm/ezkw
o

k>0
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A function f : [-m, 7] — R can be written as a Fourier series

f($) = Z <f7 eikx>L2([—7r,ﬂ']) eikm

k>0

Il
+
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Fourier analysis on Euclidean spaces

A function f : [—m, 7] — R can be written as a Fourier series

f(x) = Z <f7 eikx>L2([—7r,ﬂ']) eikm
—_—

k>0
fr Fourier coefficient



Fourier analysis on Euclidean spaces

A function f : [—m, 7] — R can be written as a Fourier series

f(ﬂi') = Z <f7 eikz>L2([—7r,ﬂ']) eikm
—_—

k>0
fr Fourier coefficient

B N +f2\//\ +f3AvAv+...

. . . . . 2 ) y
Fourier basis = Laplacian eigenfunctions: —-L;eih® = j2¢ike




Fourier analysis on graphs and manifolds

A function f: ¥V — R can be written as Fourier series

F=Y (£ o120 on

Fourier basis = Laplacian eigenfunctions: A¢y = Ax P



Fourier analysis on graphs and manifolds

A function f :V — R can be written as Fourier series

f= Z<f»¢k>L2(V) o

Fourier basis = Laplacian eigenfunctions: A¢y = Ax P

A, = frequency

e o2

First Fourier basis elements of a mamfold.
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Summary

Manifolds and graphs are natural extensions of vector spaces
Lines can be generalized to shortest paths and geodesics
The Laplacian operator defines smoothness of a function

Spectral decompositions generalize Fourier analysis
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The Geometry of Data



Part lla

Classic Manifold Learning:
A Time Before Deep Learning



Manifold Learning

Learn nonlinear embedding of data
into low dimensional space that
preserves distances locally

e

Roweis and Saul 2000
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Manifold Learning

Roweis and Saul 2000

Learn nonlinear embedding of data
into low dimensional space that
preserves distances locally

The data itself does not have to be
manifold structured

The dataset has some latent
manifold structure



IsoMap

Compute nearest neighbors graph of
dataset

Tenenbaum, de Silva and Langford 2000
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IsoMap

Compute nearest neighbors graph of
dataset

Construct matrix D € R™*" of geodesic
distances between pairs of data by
Dijkstra’s algorithm

Embed data in low dimensional space with

multidimensional scaling (MDS):

1 1 1
B=—-- (I - 11T) D (I - 11T>
2 n n

ALy Ay @1, -+, Ok top eigenvalues and
eigenvectors of B

Embedding: (\/X(zh, RN \/E‘f?k)

Tenenbaum, de Silva and Langford 2000



IsoMap

Compute nearest neighbors graph of
dataset

Construct matrix D € R™*" of geodesic
distances between pairs of data by
Dijkstra’s algorithm

Embed data in low dimensional space with
multidimensional scaling (MDS):

B Bottom loop articulation

L

1 1 1 2 B a =28
B=—-(1--117)D(1--117 mB o
2\ " BmaBeHg
| gaBB2 A RaHEg
A, -eos Ay @1, ..., O) top eigenvalues and gl 5, m8

eigenvectors of B ﬂ

Embedding: (\/Alqbl, ey \/)\kgbk) %

Tenenbaum, de Silva and Langford 2000



IsoMap

Compute nearest neighbors graph of
dataset

Construct matrix D € R™*" of geodesic
distances between pairs of data by
Dijkstra’s algorithm

Embed data in low dimensional space with

multidimensional scaling (MDS):

B gEE B
I
B--1 (I—lllT)D(I—lnT) | - «E!_E‘ au
A,y Ak, @1, .., Pk top eigenvalues and S C VR El
eigenvectors of B Cr E L ﬂ; o :

Embedding: (\/A_lqh, RN \/A_k‘z)k)

Leftright pose

Tenenbaum, de Silva and Langford 2000



Laplacian eigenmaps

Compute weighted nearest neighbors
graph of dataset

Belkin and Niyogi 2002
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Laplacian eigenmaps

Compute weighted nearest neighbors
graph of dataset

Construct graph Laplacian matrix
A=D-W

Belkin and Niyogi 2002
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Laplacian eigenmaps

Compute weighted nearest neighbors
graph of dataset

Construct graph Laplacian matrix
A=D-W

Aly s Ay @1, .-+, Ox bottom eigenvalues
and eigenvectors of A

Belkin and Niyogi 2002
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Laplacian eigenmaps

Compute weighted nearest neighbors
graph of dataset

Construct graph Laplacian matrix
A=D-W

Aly s Ay @1, .-+, Ox bottom eigenvalues
and eigenvectors of A

Embedding: (s, ..., ¢x)

Belkin and Niyogi 2002
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Laplacian eigenmaps

Compute weighted nearest neighbors

graph of dataset o028 oon "
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Belkin and Niyogi 2002; Mikolov, Sutskever, Chen, Corrado and Dean 2013



Spectral clustering

Same embedding as Laplacian eigenmaps, but use embedding vectors for
clustering instead of visualization

Ng, Jordan and Weiss 2002



Normalized cuts

Minimum (normalized) cut problem:
partition vertices into sets A, B C V

NCut(y) _ ZZGA,]GB 3 + ZZGB,JGA ]

EieA,jev Wij ZieB,jeV Wi

Shi and Malik 2000
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Normalized cuts

Minimum (normalized) cut problem:
partition vertices into sets A, B C V

NCut(y) _ ZZGA,]GB 3 + ZZGB,JGA ]

EieA,jevwij EieB,jevwij
T

y' Ay

yly

Relax optimization from binary vectors to
continuous vectors. Solution is bottom
eigenfunctions of graph Laplacian.

Shi and Malik 2000



Normalized cuts

Minimum (normalized) cut problem: °
partition vertices into sets A, B C V A / B

ZieA,jeBwij " ZieB,jeAwij @
DicajevWii  Diesjev Wij ./
y Ay o
vy

NCut(y) =

Relax optimization from binary vectors to
continuous vectors. Solution is bottom
eigenfunctions of graph Laplacian.

Used in image segmentation where each
vertex is a pixel

Shi and Malik 2000



Normalized cuts

Minimum (normalized) cut problem:
partition vertices into sets A, B C V

ZieA,jeB Wi n ZieB,jeA Wij

NCut(y) =
EieA,jevwij ZieB,jveij

y' Ay
yly

Relax optimization from binary vectors to
continuous vectors. Solution is bottom
eigenfunctions of graph Laplacian.

B

N

Shi and Malik 2000; lonescu, Vantzos and Sminchisescu 2015

Can be incorporated as layer inside a deep
network by backpropagating through
eigendecomposition



Inference on held-out data

A common pattern:



Inference on held-out data

A common pattern:

Construct Gram matrix from kernel k(x,x’)
k(x1,x1) k(x1,x%x2) ... k(x1,%xp)
N k(x2,x1) k(x2,%x2) ... k(x2,%x,)
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Use top/bottom eigenvectors of Gram matrix as embedding



Inference on held-out data

A common pattern:

Construct Gram matrix from kernel k(x,x’)

k(x1,x1) k(x1,x%x2) ... k(x1,%xp)
k(xo,x1) k(Xo,X2) ... k(X2,X,
| R ) k)
kE(xn,x1) k(Xp,%x2) ... k(Xn,Xn)

Use top/bottom eigenvectors of Gram matrix as embedding

Works for fixed dataset x1,...,x, -
but what is the embedding vector for a new data point x'?



Inference on held-out data

Assume data drawn x1,...,X, ~ p(x). Gram matrix is approximation
to linear operator:
f(x1)
1 f(x2) 1
EM . = n Zk(xiyxj)f(xj) ~ Ep(x) (k(x, %) f(x)]
- j
f(x’ﬂ) i
= K,lx)

Bengio, Paiement, Vincent et al 2004



Inference on held-out data

Assume data drawn x1,...,X, ~ p(x). Gram matrix is approximation
to linear operator:
f(x1)
1 f(x2) 1
EM . = n Zk(xiyxj)f(xj) ~ Ep(x) (k(x, %) f(x)]
- j
f(x’ﬂ) i
= K,lx)

Eigenvectors ¢y, of M are approximation to eigenfunctions ¢ (-) of
linear operator IC,,

Bengio, Paiement, Vincent et al 2004



Inference on held-out data

Assume data drawn x1,...,X, ~ p(x). Gram matrix is approximation
to linear operator:
f(x1)
1 f(x2) 1
EM . = n Zk(xiyxj)f(xj) ~ Ep(x) (k(x, %) f(x)]
) J
f(X’ﬂ) i
= Kplfl(xi)
From eigenvalues A1, ..., \; and eigenvectors ¢1, ..., ¢, of M, can

approximate eigenfunction of K, with Nystrom method:

B (x') 0 Y Prik(xi, x')

Bengio, Paiement, Vincent et al 2004



Trade-offs of manifold learning

© Exactly solvable by eigendecomposition




Trade-offs of manifold learning

© Exactly solvable by eigendecomposition
© Data efficient (works with O(1000) data points)




Trade-offs of manifold learning

© Exactly solvable by eigendecomposition
© Data efficient (works with O(1000) data points)
® Unsupervised learning without a generative model




Trade-offs of manifold learning

© Exactly solvable by eigendecomposition
© Data efficient (works with O(1000) data points)
©® Unsupervised learning without a generative model

© Learning scales as O(nlogn) with size of training data




Trade-offs of manifold learning

© Exactly solvable by eigendecomposition

© Data efficient (works with O(1000) data points)

© Unsupervised learning without a generative model

® Learning scales as O(nlogn) with size of training data

© Inference scales as O(n) with size of training data




Trade-offs of manifold learning

© Exactly solvable by eigendecomposition

© Data efficient (works with @(1000) data points)

® Unsupervised learning without a generative model

® Learning scales as O(nlogn) with size of training data
® Inference scales as O(n) with size of training data

® Performance degrades for noisy or clustered data




Trade-offs of manifold learning

OO 066060

Exactly solvable by eigendecomposition

Data efficient (works with O(1000) data points)
Unsupervised learning without a generative model
Learning scales as O(nlogn) with size of training data
Inference scales as O(n) with size of training data
Performance degrades for noisy or clustered data
Embeddings collapse on more complex data




Trade-offs of manifold learning

Exactly solvable by eigendecomposition

Data efficient (works with O(1000) data points)
Unsupervised learning without a generative model
Learning scales as O(nlogn) with size of training data
Inference scales as O(n) with size of training data
Performance degrades for noisy or clustered data

OO 060060

Embeddings collapse on more complex data

Other methods have become popular for low-dimensional visualization -
especially t-SNE (Maaten and Hinton 2008)



Collapsed embeddings

Hadsell, Chopra and LeCun 2006
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natural coordinates
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Improving spectral embeddings

Bottom eigenfunctions of graph Laplacian of evenly-scaled grid are
natural coordinates

Bottom eigenfunctions of unevely-scaled grid are not

Eigenfunctions must be orthogonal, but can still be predictable, e.g.
sin(2x) and sin(z) and cos(x).

Instead of using lowest eigenfunctions as embedding, use lowest
eigenfunctions that are unpredictable from lower eigenfunctions

Pfau and Burgess 2018



Minimally redundant Laplacian eigenmaps

After adding eigenfunctions ¢!,...,¢% to vt [0 — ¢fj+1||
embedding, evaluate ¢?*! as candidate. .

Pfau and Burgess 2018



Minimally redundant Laplacian eigenmaps

After adding eigenfunctions ¢!, ..., ¢% to ot (107 — o5
embedding, evaluate ¢?*! as candidate. o

If value of ¢¢*! at point i can be predicted
from nearest neighbors of i in ¢',..., ¢%, .
eigenfunction is too predictable S ¢d

Pfau and Burgess 2018



Minimally redundant Laplacian eigenmaps

175/3/ 28727

NORB: Model dataset for studying invariance in object recognition

Pfau and Burgess 2018; LeCun, Huang and Bottou 2005



Minimally redundant Laplacian eigenmaps

175/3/ 28727

NORB: Model dataset for studying invariance in object recognition

.’::L-s:‘ %
R

Consider a single object under different lighting and rotation

Pfau and Burgess 2018; LeCun, Huang and Bottou 2005



Minimally redundant Laplacian eigenmaps
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Minimally redundant Laplacian eigenmaps
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Minimally redundant Laplacian eigenmaps
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With filtering by redundancy, all variation captured by 6 eigenfunctions
Works with less than 1000 points!

Pfau and Burgess 2018



Minimally redundant Laplacian eigenmaps
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Minimally redundant Laplacian eigenmaps

BEEEEEEOE
. &
* i BN EN A

X Positi

Dim 3

Dim 2 Dim 2

Dim 4
Dim 4

Dim 1

B-VAE
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Minimally redundant Laplacian eigenmaps

FEEEEE
" . &
® “ & & &

Dim 3
Dim 3
Dim 3
Dim 2
Dim 2
Dim 2

Dim 2

Dim 2 Dim 2 Dim 2 Dim 2 Dim 1 Dim 1

Dim 4
Dim 4
Dim 4
Dim 4
Dim 4

Dim 4

LT
Dim 1 Dim 1 Dim 1 Dim 1

3

B-VAE Laplacian eigenmaps
Disentangling VAEs learn the dimension but not the topology

Laplacian eigenmaps learns the topology but misses some dimensions

Pfau and Burgess 2018
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Trade-offs of manifold learning

© Exactly solvable by eigendecomposition

© Data efficient (works with O(1000) data points)

©® Unsupervised learning without a generative model

© Learning scales as O(nlogn) with size of training data

© Inference scales as O(n) with size of training data

® Performance degrades for noisy or clustered data

© Collapsed embeddings can be fixed by choice of eigenvector

© Can discover topology of data without prior assumptions




Part llb

Embedding Hierarchies in
Hyperbolic Spaces



Hierarchical data

Some data can be embedded uniformly in flat space



Hierarchical data

What about data with hierarchical structure?



Hierarchical data

(4r)N -1
N-1
" (3r)
o N-1
bl
b2
bS

Tree with branching factor b has b¢ nodes at layer £ - exponential growth

N-1

Area of sphere in RV with radius r grows as r - polynomial growth



Hierarchical data

Idea: embed nodes in hierarchy in hyperbolic space instead of flat space



Hyperbolic geometry

Hyperbolic space: manifold with constant
negative curvature
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Hyperbolic geometry

Hyperbolic space: manifold with constant
negative curvature

Angles of triangle add to less than 180
degrees

Surface area of spheres grows exponentially!

Many possible models of hyperbolic space
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The Poincaré ball

Maps hyperbolic space to open ball BY

2
Metric: (u, V), p = (ﬁ) ulv

Geodesics: Circles that are orthogonal to
boundary of ball

Distances: I &
d(u, v) = arcosh (1 + 2W>

Nickel and Kiela 2017



Poincaré embeddings for learning hierarchical
representation

Given edges £ from a graph, find an embedding u; for vertex i that

minimizes:
e—d(ui,uj)

—d(uj,u,)
ijeE Zj’ stijige © ’

Nickel and Kiela 2017
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Poincaré embeddings for learning hierarchical
representation

Given edges £ from a graph, find an embedding u; for vertex i that

minimizes:
> " log -
igee  Xyrstijrge

e—d(ui,uj)

d(u;,uyr)

Dimensionality
5 10 20 50 100 200

© Euclidean  RoNk 3523 22869 16859 12817 11873 11573
" 0024 0059 0087 0140 0162 0168
5]
z3 . Rak 2059 1794 953 928 97 910
g Tranlational ypp 0517 0503 0563 0566 0562 0565
S Rak 49 402 384 398 39 383

& Poincaré

MAP 0.823  0.851 0.855 0.86 0.857 0.87

Euelid Rank 33111 21995 9523 3514 1907 815
uclidean MAP 0024 0059 0176 0286 0428 0490

]

m

zE Rak 657 566 521 472 432 404

gy Tranlational ypp 0545 054 0554 056 0562 0559

B2 pincaré Rank 5.7 43 49 46 46 46
omcare

MAP 0.825 0.852  0.861 0.863  0.856  0.855

State of the art results on link reconstruction and link prediction on
WORDNET noun dataset

Nickel and Kiela 2017



Poincaré embeddings for learning hierarchical
representation

Given edges £ from a graph, find an embedding u; for vertex i that

minimizes:
> " log -
igee  Xyrstijrge

e—d(ui,uj)

d(u;,uyr)

Table 3: Spearman’s p for Lexical Entailment on HYPERLEX.

FR  SLQS-Sim WN-Basic WN-WuP WN-LCh Vis-ID Euclidean Poincaré

p 0283 0.229 0.240 0.214 0.214 0.253 0.389 0.512

State of the art results on graded lexical entailment on HYPERLEX

Nickel and Kiela 2017



Trade-offs of Poincaré model

© Geodesics are simple
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Trade-offs of Poincaré model

© Geodesics are simple
© Metric is diagonal
® Gradients of metric are unstable near boundary




The Lorentz model

Maps N-dim hyperbolic space to surface in
RN+1

Nickel and Kiela 2018
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The Lorentz model

Maps N-dim hyperbolic space to surface in
RN+1

N
(u, V>£ = —UgVg + zi:—il_l U;V;

HY = {x e RV*L: (x,x), = —1,2¢ > 0}

Metric: (u, V)7, = (u,v), us v

Nickel and Kiela 2018



The Lorentz model

Maps N-dim hyperbolic space to surface in
RN+1

N
(u,v) = —ugvg + Ziz—il—l Uil;

HY = {x e RN (x,x), = 1,20 > 0}

Metric: (u,v)p, £ = (u,v)e un v

Geodesics: starting at x and going in
direction v, ||v]|, =1

expy (tv) = cosh(t)x + sinh(t)v

Nickel and Kiela 2018



The Lorentz model

Maps N-dim hyperbolic space to surface in
RN—i—l

N
(u,v) = —ugvg + Zi:tl Uil;

HY = {x e RN (x,x), = 1,20 > 0}

Metric: (u,v)p, £ = (u,v)e un v

Geodesics: starting at x and going in
direction v, ||v]|, =1

expy (tv) = cosh(t)x + sinh(t)v
Projection: maps vectors onto tangent space:

proj,(u) =u+ (x,u),

Nickel and Kiela 2018



Riemannian SGD

Scale Euclidean gradient by inverse metric:

h = M;'Vf(x)

Bonnabel 2013
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Riemannian SGD

Scale Euclidean gradient by inverse metric:

h=M_'Vf(x)

Project gradient onto tangent space:

gradf(x) = proj(h)

Follow geodesic along Riemannian gradient:

X ¢ exp, (—ngradf(x))

Bonnabel 2013



Learning continuous hierarchies in the Lorentz model

‘WORDNET Nouns  WORDNET Verbs EUROVOC ACM MESH
2 5 10 2 5 10 2 5 10 2 5 10 2 5 10
Poincaré 907 49 402 1071 139 135 2.83 125 123 414 18 171 6111 1405 128
MR  Lorentz 228 3.18 295 364 126 123 163 124 117 305 167 163 3899 1413 1242
A% 748 351 362 660 96 89 424 61 34 263 72 48 362 -05 29
Poincaré 118 828 865 365 910 912 643 940 944 693 941 948 195 763 794
MAP Lorentz 305 923 928 579 935 933 87.1 958 965 829 966 970 348 777 799
A% 613 103 68 586 27 23 356 1.6 20 196 27 23 439 18 06
Poincaré 138 57.2 585 110 541 551 375 575 614 598 635 629 422 699 749
P Lorentz 410 589 595 479 555 566 545 617 675 659 659 659 645 714 763

Significant improvement over Poincaré, especially in low dimensions
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Hyperbolic Attention Networks

Einstein Mldpnlnt

Attention
Weights (a)
Hyperbolic Inverse
Distance d} (@, K') Temperature (B)

!

To Hyperboloid

To Polar To Pelar
Coordinates Coord inates

Imposes hyperbolic geometry on activations of deep network with attention

To Hyperbclold

Gulcehre, Denil, Malinowski et al 2018



Part llc

Analyzing the Geometry of
Deep Generative Models



What is the shape of latent space?

' FEEELR
"EEEFE

Svymean =

Higgins, Matthey, Pal et al 2017
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What is the shape of latent space?
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Are straight lines in latent space really straight?

Higgins, Matthey, Pal et al 2017



What is the shape of latent space?

- EEEER
"EEEFE

Svymeenn

A43da
2deaa
gean
L L Taeher)
PODAD

Are straight lines in latent space really straight?

What is the right notion of distance in latent space?

Higgins, Matthey, Pal et al 2017



Latent space metric

Deep generative model with decoder f(z)

Arvanitidis, Hansen and Hauberg 2018
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Deep generative model with decoder f(z)

Manifold X’ generated by f has tangent space T,X = span(J,) where
J, is Jacobian of f at z
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Latent space metric

Deep generative model with decoder f(z)

Manifold X’ generated by f has tangent space T,X = span(J,) where
J, is Jacobian of f at z

Use ¢5 metric in observation space as metric in latent space:

(Azl, AZ2>T,X = AZ{JZ—'JZA22 = AZ,{‘MZAZQ

Arvanitidis, Hansen and Hauberg 2018



Geodesic equation
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Geodesic equation

How do we derive the geodesic equation from the introduction:

v =

7" = min Sy
Y

7I"y(t) (W(t)v V(t))

1
= min/ dtL(~y,~,t)
7 Jo

= min/o1 dt <’y(t),fy<t)

v >Tw>?‘
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Geodesic equation

How do we derive the geodesic equation from the introduction:
;5/ = 7F'y(t) (W(t)v V(t))

1
¥ =minS[y] = min/ dtL(~y,~,t)
ol Y 0

1 . .
i dt t t
win [t (3(090),
1
— min / dt > M 4i(1)5(8)
0 ij

Y

Euler-Lagrange equation:
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oy dt O+




Geodesic equation

How do we derive the geodesic equation from the introduction:
¥ = =Ty (3(t),¥(t))

1

v =minS[y] = min/ dtL(v,%,t)
¥ Y Jo

1 . .

i dt t t

mym/0 <7( ):( )>TW)X
1
= min/ dtZMfyj(t)ﬁ/i(t);Yj(t)

Y

Euler-Lagrange equation:
oL d oL
oy dt O+

Exercise: Derive the left and right side of the Euler-Lagrange equation




Geodesic equation
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Geodesic equation

gk
5% — Oy Vi

4oL _ 4 i s OM . i s
G (zzMj(mj(t)) = 2y l o (1) + M5 (1)
j .

J

oM

J k

= 2) lz . vvk(w A (8) 75 () + Mij(tﬁj (t)]



Geodesic equation
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Geodesic equation

8M3kt
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Geodesic equation

jk
Z M’Y(t) )7, (1)
6% - i J

doL d . oM o
dt oy dt (QZMv(t)% ) = 22[ 8W(t)%()+Mj(tﬂj(t)]

J
M”

22 [Z (83 () + M;jmm]

F5(t) = = e T (1 (0 (£) 35 (2)

ik 1 —1\¥J [oOMY OMIF

I‘;k(ac) are the parameters of the Levi-Civita connection:
unique connection induced by the metric




The geodesics of deep generative models

True labels Riemannian Euclidean

Digits Linear Riemannian

{0,1,2} 77.57(£0.87)% 94.28(+1.14)%
{3,4,7} 77.80(:0.91)% 89.54(+1.61)%
{5,6,9} 64.93(x0.96)% 81.13(+2.52)%

Table 1: The F-measure results for k-means.

Classification from latent representations is better

Arvanitidis, Hansen and Hauberg 2018



The geodesics of deep generative models

True lnbels N Riem

Digits Linear Riemannian
{0,1,2} 77.57(£0.87)% 94.28(+1.14)%
{3,4,7} 77.80(£0.91)% 89.54(+1.61)%
{5,6,9} 64.93(£0.96)% 81.13(£2.52)%

) o s s o 3 % > 3 Table 1: The F-measure results for k-means.

Classification from latent representations is better

Transitions along geodesics are smoother

Arvanitidis, Hansen and Hauberg 2018
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Summary

Differential geometry and spectral theory are a powerful suite of tools
for thinking about the geometry of data

Straight lines generalize to geodesics, which are defined from the local
metric structure

The spectrum of the Laplacian generalizes Fourier analysis to graphs
and manifolds

Classic manifold learning uses spectral decompositions to map data
manifolds in high-dim space to flat space

Hierarchical data is naturally mapped to hyperbolic space

The latent space of deep generative models is better understood as
being curved




Part I

Spectral Deep Learning



Part llla

Convolutions on

Graphs and Manifolds



Key properties of CNNs

C3: f. maps 16@10x10
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Key properties of CNNs

C3: f. maps 16@10x10
Ci1: zlgatzure maps S4: f. maps 16@5x5
X

|
‘ Full conrlnection | Gaussian connections
Convolutions Subsampling Convolutions St pling Full i

© Convolutional (Translation invariance)

© Scale Separation (Compositionality)

© Filters localized in space (Deformation Stability)

© O(1) parameters per filter (independent of input image size n)
© O(n) complexity per layer (filtering done in the spatial domain)
© O(logn) layers in classification tasks

LeCun et al. 1989



CNNs and Euclidean Geometry

CNNs are defined over Euclidean domains or Grids 2. Two fundamental
properties:

Translation Invariance (yielding convolutions).
Multiscale structure (yielding downsampling).

Inductive bias that exploits stationarity and deformation stability of
many tasks.




CNNs and Euclidean Geometry

CNNs are defined over Euclidean domains or Grids 2. Two fundamental
properties:

Translation Invariance (yielding convolutions).
Multiscale structure (yielding downsampling).

Inductive bias that exploits stationarity and deformation stability of
many tasks.

Roadmap: extend CNNs to non-Euclidean geometries by replacing
filtering and pooling by appropriate operators
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Convolution: Euclidean space

Given two functions f, g : [—m, 7] — R their convolution is a function

r+9)e) = | " fa)g(a — o )da!

—T

Shift-invariance: f(x — zo) * g(z) = (f * g)(x — x0)

Convolution theorem: Fourier transform diagonalizes the convolution operator
= convolution can be computed in the Fourier domain as
J— R

(fxg)=1f-9

Efficient computation using FFT
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Convolution Theorem

Convolution of two vectors £ = (f1,..., fn)" and g = (g1,...,9n) "
g g2 e oo Gn
gn 91 92 --. Gn-1 fi
fxg = T e : :
93 94 --- g1 G2 fn
g2 gs a1

diagonalized by Fourier basis
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Convolution Theorem

Convolution of two vectors £ = (f1,..., fn)" and g = (g1,...,9n) "

g g2 e oo Gn

9n 91 G2 oo Gn-1 fi
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9 g3 e . @
0 A

= &



Convolution Theorem

Convolution of two vectors f = (f1,..., f.)" and g = (g1, ...
g 92 - o Gn
9n 91 G2 oo Gn-1 fi

fxg = T e
g3 g4 --- g1 92 In
g2 93 - . @
fi o
= &

»9n

)T
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product in the Fourier domain

inverse Fourier transform
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Spectral convolution

Spectral convolution of f, g € L?(V) can be defined by analogy

fxg = Z (£, D1)L2(v) (8, Pr) L2(v) P
k>1
In matrix-vector notation

frg= ®diag(js,...,jn)®@ f
G

Not shift-invariant! (G has no circulant structure)

Filter coefficients depend on basis ¢1,..., ¢,



Effect of spectral convolution

Function f



Effect of spectral convolution

‘Edge detecting’ spectral filter ®G® T f



Effect of spectral convolution

Same spectral filter, different basis $GW¥ T f
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Effect of spectral convolution

High-frequency Laplacian eigenvector ¢so
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Part ll1b

Spectral Graph Convolutional
Neural Networks



Spectral graph CNN

Convolution expressed in the spectral domain
g=dWod'f

where W is n x n diagonal matrix of learnable spectral filter coefficients
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Spectral graph CNN

Convolution expressed in the spectral domain
g=®dWd'f

where W is n x n diagonal matrix of learnable spectral filter coefficients

© Filters are basis-dependent = does not generalize across graphs!
© O(n) parameters per layer

® O(n?) computation of forward and inverse Fourier transforms & ', &
(no FFT on graphs)

® No guarantee of spatial localization of filters

Bruna, Zaremba, Szlam, LeCun 2014



Localization and Smoothness

Vanishing moments: In the Euclidean setting

“+o00 “+o0 akA
[ erisepa= [ 2

2

dw

Bruna, Zaremba, Szlam, LeCun 2014; Henaff, Bruna, LeCun 2015
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Vanishing moments: In the Euclidean setting
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2
dw

Owk
Localization in space = smoothness in frequency domain
Parametrize the filter using a smooth spectral transfer function 7(X)
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Vanishing moments: In the Euclidean setting

+o00 +o00 k£
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2
dw

Owk
Localization in space = smoothness in frequency domain
Parametrize the filter using a smooth spectral transfer function 7(X)

Application of the filter

Bruna, Zaremba, Szlam, LeCun 2014; Henaff, Bruna, LeCun 2015



Localization and Smoothness

Vanishing moments: In the Euclidean setting

+o00 “+00 k §
| s@pa = [\ 20

2
dw

Owk
Localization in space = smoothness in frequency domain
Parametrize the filter using a smooth spectral transfer function 7(X)
Application of the parametric filter with learnable parameters «
Ta(/\l)
Ta(A)f = & o'f
Ta(An)

Bruna, Zaremba, Szlam, LeCun 2014; Henaff, Bruna, LeCun 2015



Localization and smoothness

+1

-1
0 frequency ~ *s00

Non-smooth spectral filter (delocalized in space)
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Localization and smoothness

+1

-1
0 frequency ~ *s00

Smooth spectral filter (localized in space)
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Spectral graph CNN with polynomial filters (ChebNet)

Represent spectral transfer function as a polynomial or order r
K
Ta(A) = Z a; N
Jj=0

where a = (ag, ..., a,) " is the vector of filter parameters

Defferrard, Bresson, Vandergheynst 2016; Kipf, Welling 2016
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Spectral graph CNN with polynomial filters (ChebNet)

Represent spectral transfer function as a polynomial or order r
T
Ta(A) = Z a; N
Jj=0

where a = (ag, ..., a,) " is the vector of filter parameters

© O(1) parameters per layer
© Filters have guaranteed r-hops support

© No explicit computation of &', ® = O(nr) computational com-
plexity

Defferrard, Bresson, Vandergheynst 2016; Kipf, Welling 2016



Example: citation networks

/

Figure: Monti, Boscaini, Masci, Rodola, Svoboda, Bronstein 2017



Example: citation networks

Method Cora’ PubMed’
Manifold Regularization®  59.5% 70.7%
Semidefinite Embedding®  59.0% 71.1%

Label Propagation’ 68.0% 63.0%
DeepWalk® 67.2% 65.3%
Planetoid” 75.7% 77.2%

Spectral graph CNN°® 81.6% 78.7%

Classification accuracy of different methods on citation network datasets

Data: 1:2Sen et al. 2008; methods: 3Belkin et al. 2006; *Weston et al. 2012; ®Zhu et
al. 2003; ®Perozzi et al. 2014; TYang et al. 2016; 3Kipf, Welling 2016 (simplification
of ChebNet)



Graph pooling

G' G? Coarsening structure

[o][+T2] 3]+ s e ][ 7]
NSRRI 1Y
(—2)
[o] [1]
(binary tree)
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Produce a sequence of coarsened graphs
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Graph pooling

G' G? Coarsening structure

@‘@ [o][+T2] 3]+ s e ][ 7]

(binary tree)

Produce a sequence of coarsened graphs
Max or average pooling of collapsed vertices

Binary tree arrangement of node indices
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Limitations of spectral graph CNNs

® Poor generalization across domains with different shapes unless kernels
are localized (can be remedied to some extent with spectral transformer
networks')

® Spectral kernels are isotropic due to rotation invariance of the Laplacian

1Yi, Su, Guo, Guibas 2017



Only rotationally-symmetric kernels!

Example of Chebyshev filters (order r = 7) on Euclidean grid



Anisotropic kernels on manifolds

Scale ¢ Orientation 0 Elongation «

Examples of anisotropic heat kernels on a manifold

Boscaini, Masci, Rodola, Bronstein, Cremers 2016



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton4'){ocgs[i].state=false;}}



Limitations of spectral graph CNNs

® Poor generalization across domains with different shapes unless kernels
are localized (can be remedied to some extent with spectral transformer
networks')

® Spectral kernels are isotropic due to rotation invariance of the Laplacian
(on manifolds, anisotropic Laplacians can be constructed”)

Yi, Su, Guo, Guibas 2017; 2Boscaini, Masci, Rodola, Bronstein, Cremers 2016



Limitations of spectral graph CNNs

® Poor generalization across domains with different shapes unless kernels
are localized (can be remedied to some extent with spectral transformer
networks')

® Spectral kernels are isotropic due to rotation invariance of the Laplacian
(on manifolds, anisotropic Laplacians can be constructed”)

© Only undirected graphs, as symmetry of the Laplacian matrix is assumed

1Yi, Su, Guo, Guibas 2017; 2Boscaini, Masci, Rodola, Bronstein, Cremers 2016



Different formulations of non-Euclidean CNNs

Spectral domain Spatial domain



Different formulations of non-Euclidean CNNs

Spectral domain Spatial domain

Geometric Deep Learning Tutorial: NIPS 2017
https://vimeo.com/248497329



Summary
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Summary

The convolution theorem allows us to generalize convolution operators
from grids to graphs

Naive spectral graph CNNs are unstable to deformation

Forcing the filter spectrum to be smooth stabilizes and localizes filters

Pooling operation can be replaced with graph pooling




Part Illc

Inference in Spectral Learning
with Deep Networks



Manifold learning (again)

Basic pattern:

Construct Gram matrix from kernel k(x,x’)

k(x1,x1) k(x1,x%x2) ... k(x1,%xp)
k(xo,x1) k(X2,X2) ... k(X2,X,
o | o) kb))
kE(xn,x1) k(xXp,x2) ... k(Xn,Xn)

Use top/bottom eigenvectors of Gram matrix as embedding

Use Nystrém approximation for inference on held-out data:
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Manifold learning (again)

Basic pattern:

Construct Gram matrix from kernel k(x,x’)

k(x1,x1) k(x1,x%x2) ... k(x1,%xp)
k(xo,x1) k(X2,X2) ... k(X2,X,
o | KO K)o k)
kE(xn,x1) k(xXp,x2) ... k(Xn,Xn)

Use top/bottom eigenvectors of Gram matrix as embedding

Use Nystrém approximation for inference on held-out data:

( E¢kz X X )

Why not just learn parameterized ¢y (x) directly?



Deep learn all the things

A successful strategy: take a branch of machine learning and fit the
model using a deep network
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Deep learn all the things

A successful strategy: take a branch of machine learning and fit the
model using a deep network

Variational Bayes: Variational autoencoders
Reinforcement Learning: Deep RL (DQN, A3C, PPO, TRPO, DDPG...)

Spectral Learning: Spectral Inference Networks

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018



Trade-offs of manifold learning

© Exactly solvable by eigendecomposition

© Data efficient (works with O(1000) data points)

® Unsupervised learning without a generative model

® Learning scales as O(nlogn) with size of training data

® Inference scales as O(n) with size of training data

® Performance degrades for noisy or clustered data

© Collapsed embeddings can be fixed by choice of eigenvector

© Can discover topology of data without prior assumptions




Trade-offs of manifold learning

© Exactly solvable by eigendecomposition

© Data efficient (works with O(1000) data points)

© Unsupervised learning without a generative model

© Learning scales as O(nlogn) with size of training data
© Inference scales as O(n) with size of training data

® Performance degrades for noisy or clustered data

© Collapsed embeddings can be fixed by choice of eigenvector

© Can discover topology of data without prior assumptions

Spectral inference networks trade the first two for the second two



Eigendecomposition as optimization
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Eigendecomposition as optimization

Rayleigh quotient has top eigenvector as argmax:

¢" A
max
¢ @'

Generalize to multiple eigenvectors (up to rotation):

max Tr ((@Tcp)*@TA@)

max Tr (Ex [#()(07] " Ex [kx,x)p(00(x)"] )

Replace A;; with k(x,x’) and sums with expectations

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018



Eigendecomposition as optimization

Most machine learning:
max Ex[ fy (x)]

Empirical gradient in unbiased
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Empirical gradient in unbiased
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Eigendecomposition as optimization

Most machine learning:
max Ex[ fy (x)]

Empirical gradient in unbiased
Spectral inference networks:

max Tr (Bx [95(x)09(x)"] " Exer [k, %) (%) (x)"])
Empirical gradient is biased

Solution: use moving average of gradient of ¢g¢} term

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018



Spectral inference network gradients

Objective is of the form Tr(X~'II)

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018



Spectral inference network gradients

Objective is of the form Tr(X~'II)

Gradient is of the form Tr (27!V,II) — Tr (S IIE'V,X)

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018



Spectral inference network gradients
Objective is of the form Tr(X~'II)
Gradient is of the form Tr (£71V,II) — Tr (Z 7' IIE 1V, %)
To break symmetry between eigenfunctions, use gradient
Tr (L~ "diag(L) ' VoII) — Tr (L™ "triu (Adiag(L) ") V,X)

where L is Cholesky decomposition of IT and A = L™ 'TIIL~ T

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018



Spectral inference network gradients
Objective is of the form Tr(X~'II)
Gradient is of the form Tr (£71V,II) — Tr (Z 7' IIE 1V, %)
To break symmetry between eigenfunctions, use gradient
Tr (L~ "diag(L) ' VoII) — Tr (L™ "triu (Adiag(L) ") V,X)

where L is Cholesky decomposition of IT and A = L™ 'TIIL~ T

To reduce bias in the gradient, use moving average for ¥ and VX

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018



Spectral inference networks
Sanity check: the Schrodinger equation

B(x) =~ (x) - 2

Without bias correction:

HEEEBOERE
I (=] G ) B

p WJWwWWWwMWWWWv

0 50

100
Iteration (thousands)

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018



Spectral inference networks

Sanity check: the Schrodinger equation

Ep(x) = — - V2p(x) — L)

2m

With bias correction:

/,,M*’ WY PRy P

150

0 50 100
Iteration (thousands)

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018
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Approximating Laplacian eigenmaps

Objective:

k(% x)p(x)p(x)" = (6(x) — o(x))($(x) — p(x)"

If x, x’ are sequential video frames, equivalent to Slow Feature Analysis

Input—output function g(x)

21(x2,X3) 85(x2.%3) 23(x2.%3)

2l @

x3(t)
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N

£9 Q E 2 ) —=
X1 X| X1 X1

7=6.52 1n=30.37

Output E‘:»
signal y(t) ™

3

t t

Wiskott and Sejnowski 2002; Sprekeler 2011



Approximating Laplacian eigenmaps

Objective:

k(% x)p(x)p(x)" = (6(x) — o(x))($(x) — p(x)"

If x, x’ are sequential video frames, equivalent to Slow Feature Analysis

Input—output function g(x)
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Approximating Laplacian eigenmaps

Objective:

k(% x)p(x)p(x)" = (6(x) — o(x))($(x) — p(x)"

If x, x’ are sequential video frames, equivalent to Slow Feature Analysis

Input—output function g(x)

21(x2,X3) 85(x2.%3) 23(x2.%3)

o

x3(t)
X3
X3
X3

~ |

e

%

E 0] Xy X

@ gt [~ plox)] F—ebix)

N

£9 Q E 2 ) —=
x1(® X1 X1 X

7=6.52 1n=30.37

(0]
©

3

1
7=31.53
signal y(t) ™

t t t

SFA learned layer-by-layer rather than end-to-end

SFA learned feature-by-feature rather than fully online

Wiskott and Sejnowski 2002; Sprekeler 2011



Spectral inference networks on Atari

More interpretable features compared to other approaches when trained
on random policies on Atari games

Successor Features Spectral Inference Networks

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018



Summary
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tion approximation
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Summary

Eigenfunctions can be learned by stochastic gradient descent with func-
tion approximation

Slow feature analysis is a special case of Spectral Inference Networks

While less efficient than standard spectral algorithms, it is far more
scalable
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Future challenges in manifold and spectral learning

Can we encode more structural assumptions into the choice of kernel?

Can we combine the speed and efficiency of nonparametric methods
with the scalability of parametric methods?

Can we use curvature in observation space as a learning signal rather
than a post-hoc analysis tool?

Can we use the learned representations for challenging downstream
tasks?

Can we better connect spectral learning with probabilistic models?
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