
Manifold Learning and Spectral Methods

David Pfau

Buenos Aires MLSS, 28 June 2018

What this tutorial is about

Designing models for graph- or manifold-structured input

What this tutorial is about

Designing models for data with latent graph- or manifold-structure

What this tutorial is about

Discovering latent manifold structure in data

What this tutorial is not about

F(θ) = Ex
[
∇θlogp(x|θ)∇θlogp(x|θ)T

]
θt+1 ← θt + F−1∇θlogp(xt|θt)

Information geometry - the manifold structure of parameter space

Spectral Learning

Any learning algorithm where the usual tools (SGD, EM, MCMC...) are
replaced with eigendecomposition or SVD

Solves a nonconvex optimization exactly!

A = ΦΛΦT

min
Φ

ΦTΦ=I

Tr(ΦTAΦ)

Functions on Rn can be decomposed with Fourier basis. Spectral
analysis generalizes Fourier analysis to manifolds and graphs

Spectral Learning

Any learning algorithm where the usual tools (SGD, EM, MCMC...) are
replaced with eigendecomposition or SVD

Solves a nonconvex optimization exactly!

A = ΦΛΦT

min
Φ

ΦTΦ=I

Tr(ΦTAΦ)

Functions on Rn can be decomposed with Fourier basis. Spectral
analysis generalizes Fourier analysis to manifolds and graphs

Spectral Learning

Any learning algorithm where the usual tools (SGD, EM, MCMC...) are
replaced with eigendecomposition or SVD

Solves a nonconvex optimization exactly!

A = ΦΛΦT

min
Φ

ΦTΦ=I

Tr(ΦTAΦ)

Functions on Rn can be decomposed with Fourier basis. Spectral
analysis generalizes Fourier analysis to manifolds and graphs

What is this good for?

Tenenbaum, De Silva and Langford 2000

What is this good for?

Boots, Siddiqi and Gordon 2011

Outline

Theory

Graphs

Manifolds and Differential Geometry

Spectral Theory

The Geometry of Data

Classic Manifold Learning

Embedding Hierarchies in Hyperbolic Space

Analyzing the Geometry of Deep Generative Models

Spectral Deep Learning

Convolutions on Graphs and Manifolds

Spectral Graph Convolutional Neural Networks

Inference in Spectral Learning with Deep Networks

Outline

Theory

Graphs

Manifolds and Differential Geometry

Spectral Theory

The Geometry of Data

Classic Manifold Learning

Embedding Hierarchies in Hyperbolic Space

Analyzing the Geometry of Deep Generative Models

Spectral Deep Learning

Convolutions on Graphs and Manifolds

Spectral Graph Convolutional Neural Networks

Inference in Spectral Learning with Deep Networks

Outline

Theory

Graphs

Manifolds and Differential Geometry

Spectral Theory

The Geometry of Data

Classic Manifold Learning

Embedding Hierarchies in Hyperbolic Space

Analyzing the Geometry of Deep Generative Models

Spectral Deep Learning

Convolutions on Graphs and Manifolds

Spectral Graph Convolutional Neural Networks

Inference in Spectral Learning with Deep Networks

Part I

Theory

Part Ia

Graph Theory (in three slides)

Graphs

Weighted undirected graph G with vertices
V = {1, . . . , n}, edges E ⊆ V × V and edge
weights wij ≥ 0 for (i, j) ∈ E

Functions over the vertices
L2(V) = {f : V → R}

Inner product

〈f, g〉L2(V) =
∑
i∈V

fi gi = f>g

wij

Graphs

Weighted undirected graph G with vertices
V = {1, . . . , n}, edges E ⊆ V × V and edge
weights wij ≥ 0 for (i, j) ∈ E

Functions over the vertices
L2(V) = {f : V → R}

Inner product

〈f, g〉L2(V) =
∑
i∈V

fi gi = f>g

fi

Graphs

Weighted undirected graph G with vertices
V = {1, . . . , n}, edges E ⊆ V × V and edge
weights wij ≥ 0 for (i, j) ∈ E

Functions over the vertices
L2(V) = {f : V → R} represented as
vectors f = (f1, . . . , fn)

Inner product

〈f, g〉L2(V) =
∑
i∈V

fi gi = f>g

fi

Graphs

Weighted undirected graph G with vertices
V = {1, . . . , n}, edges E ⊆ V × V and edge
weights wij ≥ 0 for (i, j) ∈ E

Functions over the vertices
L2(V) = {f : V → R} represented as
vectors f = (f1, . . . , fn)

Inner product

〈f, g〉L2(V) =
∑
i∈V

fi gi = f>g

fi

Shortest paths on graphs

Dijkstra’s Algorithm: Find sequence
i0, . . . , ik ∈ V from source i0 to sink ik that
minimizes

∑
t witit+1

Create queue of active nodes and
shortest-path tree, starting from source

Remove active node i closest to source,
compute distance to neighbors
dist[j] = dist[i] + wij .

If dist[j] is less than before, set i as parent
node of j in shortest path tree.

Stop when sink is reached. Path to the root
of the tree is the shortest path.

Complexity: O(|E|+ |V|log|V|)

i0

ik

Shortest paths on graphs

Dijkstra’s Algorithm: Find sequence
i0, . . . , ik ∈ V from source i0 to sink ik that
minimizes

∑
t witit+1

Create queue of active nodes and
shortest-path tree, starting from source

Remove active node i closest to source,
compute distance to neighbors
dist[j] = dist[i] + wij .

If dist[j] is less than before, set i as parent
node of j in shortest path tree.

Stop when sink is reached. Path to the root
of the tree is the shortest path.

Complexity: O(|E|+ |V|log|V|)

Shortest paths on graphs

Dijkstra’s Algorithm: Find sequence
i0, . . . , ik ∈ V from source i0 to sink ik that
minimizes

∑
t witit+1

Create queue of active nodes and
shortest-path tree, starting from source

Remove active node i closest to source,
compute distance to neighbors
dist[j] = dist[i] + wij .

If dist[j] is less than before, set i as parent
node of j in shortest path tree.

Stop when sink is reached. Path to the root
of the tree is the shortest path.

Complexity: O(|E|+ |V|log|V|)

Shortest paths on graphs

Dijkstra’s Algorithm: Find sequence
i0, . . . , ik ∈ V from source i0 to sink ik that
minimizes

∑
t witit+1

Create queue of active nodes and
shortest-path tree, starting from source

Remove active node i closest to source,
compute distance to neighbors
dist[j] = dist[i] + wij .

If dist[j] is less than before, set i as parent
node of j in shortest path tree.

Stop when sink is reached. Path to the root
of the tree is the shortest path.

Complexity: O(|E|+ |V|log|V|)

Shortest paths on graphs

Dijkstra’s Algorithm: Find sequence
i0, . . . , ik ∈ V from source i0 to sink ik that
minimizes

∑
t witit+1

Create queue of active nodes and
shortest-path tree, starting from source

Remove active node i closest to source,
compute distance to neighbors
dist[j] = dist[i] + wij .

If dist[j] is less than before, set i as parent
node of j in shortest path tree.

Stop when sink is reached. Path to the root
of the tree is the shortest path.

Complexity: O(|E|+ |V|log|V|)

Shortest paths on graphs

Dijkstra’s Algorithm: Find sequence
i0, . . . , ik ∈ V from source i0 to sink ik that
minimizes

∑
t witit+1

Create queue of active nodes and
shortest-path tree, starting from source

Remove active node i closest to source,
compute distance to neighbors
dist[j] = dist[i] + wij .

If dist[j] is less than before, set i as parent
node of j in shortest path tree.

Stop when sink is reached. Path to the root
of the tree is the shortest path.

Complexity: O(|E|+ |V|log|V|)

Graph Laplacian

Unnormalized Laplacian ∆ : L2(V)→ L2(V)

(∆f)i =
∑

j:(i,j)∈E

wij(fi − fj)

(up to scale) difference between f and its
local average

Represented as a positive semi-definite n× n
matrix ∆ = D−W where W = (wij) and
D = diag(

∑
j 6=i wij)

Dirichlet energy of f

‖f‖2G =
1

2

n∑
ij=1

wij(fi − fj)2 = f>∆f

fi

fj

Graph Laplacian

Unnormalized Laplacian ∆ : L2(V)→ L2(V)

(∆f)i =
∑

j:(i,j)∈E

wij(fi − fj)

= fi
∑

j:(i,j)∈E

wij −
∑

j:(i,j)∈E

wijfj

(up to scale) difference between f and its
local average

Represented as a positive semi-definite n× n
matrix ∆ = D−W where W = (wij) and
D = diag(

∑
j 6=i wij)

Dirichlet energy of f

‖f‖2G =
1

2

n∑
ij=1

wij(fi − fj)2 = f>∆f

fi

fj

Graph Laplacian

Unnormalized Laplacian ∆ : L2(V)→ L2(V)

(∆f)i =
∑

j:(i,j)∈E

wij(fi − fj)

(up to scale) difference between f and its
local average

Represented as a positive semi-definite n× n
matrix ∆ = D−W where W = (wij) and
D = diag(

∑
j 6=i wij)

Dirichlet energy of f

‖f‖2G =
1

2

n∑
ij=1

wij(fi − fj)2 = f>∆f

fi

fj

Graph Laplacian

Unnormalized Laplacian ∆ : L2(V)→ L2(V)

(∆f)i =
∑

j:(i,j)∈E

wij(fi − fj)

(up to scale) difference between f and its
local average

Represented as a positive semi-definite n× n
matrix ∆ = D−W where W = (wij) and
D = diag(

∑
j 6=i wij)

Dirichlet energy of f

‖f‖2G =
1

2

n∑
ij=1

wij(fi − fj)2 = f>∆f

fi

fj

measures the smoothness of f (how fast it changes locally)

Part Ib

Manifolds and Differential Geometry

Riemannian manifolds

Manifold X = locally flat space (no
non-differentiable corners)

Tangent plane TxX = local Euclidean
representation of manifold X around x

Riemannian metric describes the local
intrinsic structure at x

〈·, ·〉TxX : TxX × TxX → R

Scalar fields f : X → R and vector
fields F : X → TX

Inner products

〈f, g〉L2(X) =

∫
X
f(x)g(x)dx

〈F,G〉L2(TX) =

∫
X
〈F (x), G(x)〉TxXdx

xTxX

X

Riemannian manifolds

Manifold X = locally flat space (no
non-differentiable corners)

Tangent plane TxX = local Euclidean
representation of manifold X around x

Riemannian metric describes the local
intrinsic structure at x

〈·, ·〉TxX : TxX × TxX → R

Scalar fields f : X → R and vector
fields F : X → TX

Inner products

〈f, g〉L2(X) =

∫
X
f(x)g(x)dx

〈F,G〉L2(TX) =

∫
X
〈F (x), G(x)〉TxXdx

xTxX

X

Riemannian manifolds

Manifold X = locally flat space (no
non-differentiable corners)

Tangent plane TxX = local Euclidean
representation of manifold X around x

Riemannian metric describes the local
intrinsic structure at x

〈·, ·〉TxX : TxX × TxX → R

Scalar fields f : X → R and vector
fields F : X → TX

Inner products

〈f, g〉L2(X) =

∫
X
f(x)g(x)dx

〈F,G〉L2(TX) =

∫
X
〈F (x), G(x)〉TxXdx

f

F

Riemannian manifolds

Manifold X = locally flat space (no
non-differentiable corners)

Tangent plane TxX = local Euclidean
representation of manifold X around x

Riemannian metric describes the local
intrinsic structure at x

〈·, ·〉TxX : TxX × TxX → R

Scalar fields f : X → R and vector
fields F : X → TX

Inner products

〈f, g〉L2(X) =

∫
X
f(x)g(x)dx

〈F,G〉L2(TX) =

∫
X
〈F (x), G(x)〉TxXdx

f

F

Shortest paths on manifolds

Curve γ(·) : [0, 1]→ X = smooth path
along manifold

Velocity γ̇(·) : [0, 1]→ TxX = local
direction of change along the curve

Curve energy integrates length at constant
velocity

S[γ] =

∫ 1

0

dt
〈

˙γ(t), ˙γ(t)
〉
Tγ(t)X

Geodesic shortest curve between points

γ∗ = min
γ

γ(0)=x0

γ(1)=x1

S[γ]

γ(t)

γ̇(t)

γ(0)

γ(1)

Shortest paths on manifolds

Curve γ(·) : [0, 1]→ X = smooth path
along manifold

Velocity γ̇(·) : [0, 1]→ TxX = local
direction of change along the curve

Curve energy integrates length at constant
velocity

S[γ] =

∫ 1

0

dt
〈

˙γ(t), ˙γ(t)
〉
Tγ(t)X

Geodesic shortest curve between points

γ∗ = min
γ

γ(0)=x0

γ(1)=x1

S[γ]

γ(t)

γ̇(t)

γ(0)

γ(1)

Shortest paths on manifolds

Curve γ(·) : [0, 1]→ X = smooth path
along manifold

Velocity γ̇(·) : [0, 1]→ TxX = local
direction of change along the curve

Curve energy integrates length at constant
velocity

S[γ] =

∫ 1

0

dt
〈

˙γ(t), ˙γ(t)
〉
Tγ(t)X

Geodesic shortest curve between points

γ∗ = min
γ

γ(0)=x0

γ(1)=x1

S[γ]

γ(t)

γ̇(t)

γ(0)

γ(1)

Shortest paths on manifolds

Curve γ(·) : [0, 1]→ X = smooth path
along manifold

Velocity γ̇(·) : [0, 1]→ TxX = local
direction of change along the curve

Curve energy integrates length at constant
velocity

S[γ] =

∫ 1

0

dt
〈

˙γ(t), ˙γ(t)
〉
Tγ(t)X

Geodesic shortest curve between points

γ∗ = min
γ

γ(0)=x0

γ(1)=x1

S[γ]

γ(t)

γ̇(t)

γ(0)

γ(1)

Shortest paths on manifolds

Curve γ(·) : [0, 1]→ X = smooth path
along manifold

Velocity γ̇(·) : [0, 1]→ TxX = local
direction of change along the curve

Curve energy integrates length at constant
velocity

S[γ] =

∫ 1

0

dt
〈

˙γ(t), ˙γ(t)
〉
Tγ(t)X

Geodesic shortest curve between points

γ∗ = min
γ

γ(0)=x0

γ(1)=x1

S[γ]

γ(t)

γ̇(t)

γ(0)

γ(1)

Geodesic is a path such that the velocities are locally parallel

Parallel Transport

Connection Γx(F,G): infinitesimal
change to vector F ∈ TxX that keeps
it locally parallel when moved in the
direction G ∈ TxX .

Parallel transport Sequence of vectors
F (t) ∈ Tγ(t)X along curve γ that are
all locally parallel.

Ḟ (t) + Γγ(t)(F (t), γ̇(t)) = 0

G

F

F − Γ(F,G)

Parallel Transport

Connection Γx(F,G): infinitesimal
change to vector F ∈ TxX that keeps
it locally parallel when moved in the
direction G ∈ TxX .

Parallel transport Sequence of vectors
F (t) ∈ Tγ(t)X along curve γ that are
all locally parallel.

Ḟ (t) + Γγ(t)(F (t), γ̇(t)) = 0

G

F

F − Γ(F,G)

Parallel Transport

Connection Γx(F,G): infinitesimal
change to vector F ∈ TxX that keeps
it locally parallel when moved in the
direction G ∈ TxX .

Parallel transport Sequence of vectors
F (t) ∈ Tγ(t)X along curve γ that are
all locally parallel.

Ḟ (t) + Γγ(t)(F (t), γ̇(t)) = 0

G

F

F − Γ(F,G)

Geodesic equation

Parallel transport:

Ḟ (t) + Γγ(t)(F (t), γ̇(t)) = 0

The geodesic equation:

γ̈(t) + Γγ(t)(γ̇(t), γ̇(t)) = 0

A geodesic is a curve such that if you parallel transport its velocity at a
point along itself, the vector always remains tangent to the curve

Geodesic equation

Parallel transport:

Ḟ (t) + Γγ(t)(F (t), γ̇(t)) = 0

The geodesic equation:

γ̈(t) + Γγ(t)(γ̇(t), γ̇(t)) = 0

A geodesic is a curve such that if you parallel transport its velocity at a
point along itself, the vector always remains tangent to the curve

Geodesic equation

Parallel transport:

Ḟ (t) + Γγ(t)(F (t), γ̇(t)) = 0

The geodesic equation:

γ̈(t) + Γγ(t)(γ̇(t), γ̇(t)) = 0

A geodesic is a curve such that if you parallel transport its velocity at a
point along itself, the vector always remains tangent to the curve

Geodesic equation

Parallel transport:

Ḟ (t) + Γγ(t)(F (t), γ̇(t)) = 0

The geodesic equation:

γ̈(t) + Γγ(t)(γ̇(t), γ̇(t)) = 0

A geodesic is a curve such that if you parallel transport its velocity at a
point along itself, the vector always remains tangent to the curve

Solve numerically on meshes with fast marching method

Kimmel and Sethian 1998

Manifold Laplacian

Laplacian ∆ : L2(X)→ L2(X)

∆f(x) = −div∇f(x)

where gradient ∇ :L2(X)→L2(TX)
and divergence div :L2(TX)→L2(X)
are adjoint operators

〈F,∇f〉L2(TX) = 〈−divF, f〉L2(X)

Laplacian is self-adjoint

〈∆f, f〉L2(X) = 〈f,∆f〉L2(X)

Continuous limit of graph Laplacian
under some conditions

Dirichlet energy of f

〈∇f,∇f〉L2(TX) =

∫
X
f(x)∆f(x)dx

x

F

div∇f(x)

Manifold Laplacian

Laplacian ∆ : L2(X)→ L2(X)

∆f(x) = −div∇f(x)

where gradient ∇ :L2(X)→L2(TX)
and divergence div :L2(TX)→L2(X)
are adjoint operators

〈F,∇f〉L2(TX) = 〈−divF, f〉L2(X)

Laplacian is self-adjoint

〈∆f, f〉L2(X) = 〈f,∆f〉L2(X)

Continuous limit of graph Laplacian
under some conditions

Dirichlet energy of f

〈∇f,∇f〉L2(TX) =

∫
X
f(x)∆f(x)dx

x

F

div∇f(x)

Manifold Laplacian

Laplacian ∆ : L2(X)→ L2(X)

∆f(x) = −div∇f(x)

where gradient ∇ :L2(X)→L2(TX)
and divergence div :L2(TX)→L2(X)
are adjoint operators

〈F,∇f〉L2(TX) = 〈−divF, f〉L2(X)

Laplacian is self-adjoint

〈∆f, f〉L2(X) = 〈f,∆f〉L2(X)

Continuous limit of graph Laplacian
under some conditions

Dirichlet energy of f

〈∇f,∇f〉L2(TX) =

∫
X
f(x)∆f(x)dx

x

F

div∇f(x)

measures the smoothness of f (how fast it changes locally)

Part Ic

Spectral Theory for
Graphs and Manifolds

Orthogonal bases on graphs

Find the smoothest orthogonal basis {φ1, . . . , φn} ⊆ L2(V)

min
φ1

EDir(ψ1) s.t. ‖φ1‖ = 1

min
φk

EDir(ψk) s.t. ‖φk‖ = 1, k = 2, 3, . . . n

φk ⊥ span{φ1, . . . , φk−1}

Solution: Φ = Laplacian eigenvectors

Orthogonal bases on graphs

Find the smoothest orthogonal basis {φ1, . . . , φn} ⊆ L2(V)

min
Φ∈Rn×n

trace(Φ>∆Φ) s.t. Φ>Φ = I

Solution: Φ = Laplacian eigenvectors

Orthogonal bases on graphs

Find the smoothest orthogonal basis {φ1, . . . , φn} ⊆ L2(V)

min
Φ∈Rn×n

trace(Φ>∆Φ) s.t. Φ>Φ = I

Solution: Φ = Laplacian eigenvectors

Laplacian eigenvectors and eigenvalues

Eigendecomposition of a graph Laplacian

∆ = ΦΛΦ>

where Φ = (φ1, . . . ,φn) are orthogonal eigenvectors (Φ>Φ = I) and
Λ = diag(λ1, . . . , λn) the corresponding non-negative eigenvalues

Laplacian eigenvectors and eigenvalues

Eigendecomposition of a graph Laplacian

∆ = ΦΛΦ>

where Φ = (φ1, . . . ,φn) are orthogonal eigenvectors (Φ>Φ = I) and
Λ = diag(λ1, . . . , λn) the corresponding non-negative eigenvalues

−π 0 +π

−1

0

+1

First eigenfunctions of 1D Euclidean Laplacian

Laplacian eigenvectors and eigenvalues

Eigendecomposition of a graph Laplacian

∆ = ΦΛΦ>

where Φ = (φ1, . . . ,φn) are orthogonal eigenvectors (Φ>Φ = I) and
Λ = diag(λ1, . . . , λn) the corresponding non-negative eigenvalues

0

max

min

φ1 φ2 φ3 φ4

First eigenfunctions of a graph Laplacian

Laplacian eigenvectors and eigenvalues

Eigendecomposition of a graph Laplacian

∆ = ΦΛΦ>

where Φ = (φ1, . . . ,φn) are orthogonal eigenvectors (Φ>Φ = I) and
Λ = diag(λ1, . . . , λn) the corresponding non-negative eigenvalues

0

max

min

φ1 φ2 φ3 φ4

First eigenfunctions of a manifold Laplacian

Fourier analysis on Euclidean spaces

A function f : [−π, π]→ R can be written as a Fourier series

f(x) =
∑
k≥0

1

2π

∫ π

−π
f(x′)e−ikx

′
dx′eikx

f̂1 f̂2 f̂3= + + + . . .

Fourier basis = Laplacian eigenfunctions: − d2

dx2 e
ikx = k2eikx

Fourier analysis on Euclidean spaces

A function f : [−π, π]→ R can be written as a Fourier series

f(x) =
∑
k≥0

〈f, eikx〉L2([−π,π])

︸ ︷︷ ︸
f̂k Fourier coefficient

eikx

f̂1 f̂2 f̂3= + + + . . .

Fourier basis = Laplacian eigenfunctions: − d2

dx2 e
ikx = k2eikx

Fourier analysis on Euclidean spaces

A function f : [−π, π]→ R can be written as a Fourier series

f(x) =
∑
k≥0

〈f, eikx〉L2([−π,π])︸ ︷︷ ︸
f̂k Fourier coefficient

eikx

f̂1 f̂2 f̂3= + + + . . .

Fourier basis = Laplacian eigenfunctions: − d2

dx2 e
ikx = k2eikx

Fourier analysis on Euclidean spaces

A function f : [−π, π]→ R can be written as a Fourier series

f(x) =
∑
k≥0

〈f, eikx〉L2([−π,π])︸ ︷︷ ︸
f̂k Fourier coefficient

eikx

f̂1 f̂2 f̂3= + + + . . .

Fourier basis = Laplacian eigenfunctions: − d2

dx2 e
ikx = k2eikx

Fourier analysis on graphs and manifolds

A function f : V → R can be written as Fourier series

f =

n∑
k=1

〈f, φk〉L2(V)︸ ︷︷ ︸
f̂k

φk

Fourier basis = Laplacian eigenfunctions: ∆φk = λkφk

λk = frequency

Fourier analysis on graphs and manifolds

A function f : V → R can be written as Fourier series

f =

n∑
k=1

〈f, φk〉L2(V)︸ ︷︷ ︸
f̂k

φk

Fourier basis = Laplacian eigenfunctions: ∆φk = λkφk

λk = frequency

0

max

min

φ1 φ2 φ3 φ4

First Fourier basis elements of a manifold.

Summary

Manifolds and graphs are natural extensions of vector spaces

Summary

Manifolds and graphs are natural extensions of vector spaces

Lines can be generalized to shortest paths and geodesics

Summary

Manifolds and graphs are natural extensions of vector spaces

Lines can be generalized to shortest paths and geodesics

The Laplacian operator defines smoothness of a function

Summary

Manifolds and graphs are natural extensions of vector spaces

Lines can be generalized to shortest paths and geodesics

The Laplacian operator defines smoothness of a function

Spectral decompositions generalize Fourier analysis

Part II

The Geometry of Data

Part IIa

Classic Manifold Learning:
A Time Before Deep Learning

Manifold Learning

Learn nonlinear embedding of data
into low dimensional space that
preserves distances locally

The data itself does not have to be
manifold structured

The dataset has some latent
manifold structure

Roweis and Saul 2000

Manifold Learning

Learn nonlinear embedding of data
into low dimensional space that
preserves distances locally

The data itself does not have to be
manifold structured

The dataset has some latent
manifold structure

Roweis and Saul 2000

Manifold Learning

Learn nonlinear embedding of data
into low dimensional space that
preserves distances locally

The data itself does not have to be
manifold structured

The dataset has some latent
manifold structure

Roweis and Saul 2000

IsoMap

Compute nearest neighbors graph of
dataset

Construct matrix D ∈ Rn×n of geodesic
distances between pairs of data by
Dijkstra’s algorithm

Embed data in low dimensional space with
multidimensional scaling (MDS):

B = −1

2

(
I− 1

n
11T

)
D

(
I− 1

n
11T

)
λ1, . . . , λk, φ1, . . . , φk top eigenvalues and
eigenvectors of B

Embedding:
(√
λ1φ1, . . . ,

√
λkφk

)

Tenenbaum, de Silva and Langford 2000

IsoMap

Compute nearest neighbors graph of
dataset

Construct matrix D ∈ Rn×n of geodesic
distances between pairs of data by
Dijkstra’s algorithm

Embed data in low dimensional space with
multidimensional scaling (MDS):

B = −1

2

(
I− 1

n
11T

)
D

(
I− 1

n
11T

)
λ1, . . . , λk, φ1, . . . , φk top eigenvalues and
eigenvectors of B

Embedding:
(√
λ1φ1, . . . ,

√
λkφk

)

Tenenbaum, de Silva and Langford 2000

IsoMap

Compute nearest neighbors graph of
dataset

Construct matrix D ∈ Rn×n of geodesic
distances between pairs of data by
Dijkstra’s algorithm

Embed data in low dimensional space with
multidimensional scaling (MDS):

B = −1

2

(
I− 1

n
11T

)
D

(
I− 1

n
11T

)
λ1, . . . , λk, φ1, . . . , φk top eigenvalues and
eigenvectors of B

Embedding:
(√
λ1φ1, . . . ,

√
λkφk

)

Tenenbaum, de Silva and Langford 2000

IsoMap

Compute nearest neighbors graph of
dataset

Construct matrix D ∈ Rn×n of geodesic
distances between pairs of data by
Dijkstra’s algorithm

Embed data in low dimensional space with
multidimensional scaling (MDS):

B = −1

2

(
I− 1

n
11T

)
D

(
I− 1

n
11T

)

λ1, . . . , λk, φ1, . . . , φk top eigenvalues and
eigenvectors of B

Embedding:
(√
λ1φ1, . . . ,

√
λkφk

)

Tenenbaum, de Silva and Langford 2000

IsoMap

Compute nearest neighbors graph of
dataset

Construct matrix D ∈ Rn×n of geodesic
distances between pairs of data by
Dijkstra’s algorithm

Embed data in low dimensional space with
multidimensional scaling (MDS):

B = −1

2

(
I− 1

n
11T

)
D

(
I− 1

n
11T

)
λ1, . . . , λk, φ1, . . . , φk top eigenvalues and
eigenvectors of B

Embedding:
(√
λ1φ1, . . . ,

√
λkφk

)

Tenenbaum, de Silva and Langford 2000

IsoMap

Compute nearest neighbors graph of
dataset

Construct matrix D ∈ Rn×n of geodesic
distances between pairs of data by
Dijkstra’s algorithm

Embed data in low dimensional space with
multidimensional scaling (MDS):

B = −1

2

(
I− 1

n
11T

)
D

(
I− 1

n
11T

)
λ1, . . . , λk, φ1, . . . , φk top eigenvalues and
eigenvectors of B

Embedding:
(√
λ1φ1, . . . ,

√
λkφk

)
Tenenbaum, de Silva and Langford 2000

IsoMap

Compute nearest neighbors graph of
dataset

Construct matrix D ∈ Rn×n of geodesic
distances between pairs of data by
Dijkstra’s algorithm

Embed data in low dimensional space with
multidimensional scaling (MDS):

B = −1

2

(
I− 1

n
11T

)
D

(
I− 1

n
11T

)
λ1, . . . , λk, φ1, . . . , φk top eigenvalues and
eigenvectors of B

Embedding:
(√
λ1φ1, . . . ,

√
λkφk

)
Tenenbaum, de Silva and Langford 2000

IsoMap

Compute nearest neighbors graph of
dataset

Construct matrix D ∈ Rn×n of geodesic
distances between pairs of data by
Dijkstra’s algorithm

Embed data in low dimensional space with
multidimensional scaling (MDS):

B = −1

2

(
I− 1

n
11T

)
D

(
I− 1

n
11T

)
λ1, . . . , λk, φ1, . . . , φk top eigenvalues and
eigenvectors of B

Embedding:
(√
λ1φ1, . . . ,

√
λkφk

)
Tenenbaum, de Silva and Langford 2000

Laplacian eigenmaps

Compute weighted nearest neighbors
graph of dataset

Construct graph Laplacian matrix
∆ = D−W

λ1, . . . , λk, φ1, . . . , φk bottom eigenvalues
and eigenvectors of ∆

Embedding: (φ2, . . . , φk)

Belkin and Niyogi 2002

Laplacian eigenmaps

Compute weighted nearest neighbors
graph of dataset

Construct graph Laplacian matrix
∆ = D−W

λ1, . . . , λk, φ1, . . . , φk bottom eigenvalues
and eigenvectors of ∆

Embedding: (φ2, . . . , φk)

Belkin and Niyogi 2002

Laplacian eigenmaps

Compute weighted nearest neighbors
graph of dataset

Construct graph Laplacian matrix
∆ = D−W

λ1, . . . , λk, φ1, . . . , φk bottom eigenvalues
and eigenvectors of ∆

Embedding: (φ2, . . . , φk)

Belkin and Niyogi 2002

Laplacian eigenmaps

Compute weighted nearest neighbors
graph of dataset

Construct graph Laplacian matrix
∆ = D−W

λ1, . . . , λk, φ1, . . . , φk bottom eigenvalues
and eigenvectors of ∆

Embedding: (φ2, . . . , φk)

Belkin and Niyogi 2002

Laplacian eigenmaps

Compute weighted nearest neighbors
graph of dataset

Construct graph Laplacian matrix
∆ = D−W

λ1, . . . , λk, φ1, . . . , φk bottom eigenvalues
and eigenvectors of ∆

Embedding: (φ2, . . . , φk)

Belkin and Niyogi 2002; Mikolov, Sutskever, Chen, Corrado and Dean 2013

Spectral clustering

Same embedding as Laplacian eigenmaps, but use embedding vectors for
clustering instead of visualization

Spectral Clustering

Other

Ng, Jordan and Weiss 2002

Normalized cuts

Minimum (normalized) cut problem:
partition vertices into sets A,B ⊂ V

NCut(y) =

∑
i∈A,j∈B wij∑
i∈A,j∈V wij

+

∑
i∈B,j∈A wij∑
i∈B,j∈V wij

Relax optimization from binary vectors to
continuous vectors. Solution is bottom
eigenfunctions of graph Laplacian.

A B

yi = +1

yi = −1

Shi and Malik 2000

Normalized cuts

Minimum (normalized) cut problem:
partition vertices into sets A,B ⊂ V

NCut(y) =

∑
i∈A,j∈B wij∑
i∈A,j∈V wij

+

∑
i∈B,j∈A wij∑
i∈B,j∈V wij

=
yT (D−W)y

yTy

Relax optimization from binary vectors to
continuous vectors. Solution is bottom
eigenfunctions of graph Laplacian.

A B

yi = +1

yi = −1

Shi and Malik 2000

Normalized cuts

Minimum (normalized) cut problem:
partition vertices into sets A,B ⊂ V

NCut(y) =

∑
i∈A,j∈B wij∑
i∈A,j∈V wij

+

∑
i∈B,j∈A wij∑
i∈B,j∈V wij

=
yT∆y

yTy

Relax optimization from binary vectors to
continuous vectors. Solution is bottom
eigenfunctions of graph Laplacian.

A B

yi = +1

yi = −1

Shi and Malik 2000

Normalized cuts

Minimum (normalized) cut problem:
partition vertices into sets A,B ⊂ V

NCut(y) =

∑
i∈A,j∈B wij∑
i∈A,j∈V wij

+

∑
i∈B,j∈A wij∑
i∈B,j∈V wij

=
yT∆y

yTy

Relax optimization from binary vectors to
continuous vectors. Solution is bottom
eigenfunctions of graph Laplacian.

A B

yi = +1

yi = −1

Shi and Malik 2000

Normalized cuts

Minimum (normalized) cut problem:
partition vertices into sets A,B ⊂ V

NCut(y) =

∑
i∈A,j∈B wij∑
i∈A,j∈V wij

+

∑
i∈B,j∈A wij∑
i∈B,j∈V wij

=
yT∆y

yTy

Relax optimization from binary vectors to
continuous vectors. Solution is bottom
eigenfunctions of graph Laplacian.

Used in image segmentation where each
vertex is a pixel

A B

yi = +1

yi = −1

Shi and Malik 2000

Normalized cuts

Minimum (normalized) cut problem:
partition vertices into sets A,B ⊂ V

NCut(y) =

∑
i∈A,j∈B wij∑
i∈A,j∈V wij

+

∑
i∈B,j∈A wij∑
i∈B,j∈V wij

=
yT∆y

yTy

Relax optimization from binary vectors to
continuous vectors. Solution is bottom
eigenfunctions of graph Laplacian.

Can be incorporated as layer inside a deep
network by backpropagating through
eigendecomposition

A B

yi = +1

yi = −1

Shi and Malik 2000; Ionescu, Vantzos and Sminchisescu 2015

Inference on held-out data

A common pattern:

Construct Gram matrix from kernel k(x,x′)

M =


k(x1,x1) k(x1,x2) . . . k(x1,xn)
k(x2,x1) k(x2,x2) . . . k(x2,xn)

...
...

. . .
...

k(xn,x1) k(xn,x2) . . . k(xn,xn)



Use top/bottom eigenvectors of Gram matrix as embedding

Works for fixed dataset x1, . . . ,xn -
but what is the embedding vector for a new data point x′?

Inference on held-out data

A common pattern:

Construct Gram matrix from kernel k(x,x′)

M =


k(x1,x1) k(x1,x2) . . . k(x1,xn)
k(x2,x1) k(x2,x2) . . . k(x2,xn)

...
...

. . .
...

k(xn,x1) k(xn,x2) . . . k(xn,xn)



Use top/bottom eigenvectors of Gram matrix as embedding

Works for fixed dataset x1, . . . ,xn -
but what is the embedding vector for a new data point x′?

Inference on held-out data

A common pattern:

Construct Gram matrix from kernel k(x,x′)

M =


k(x1,x1) k(x1,x2) . . . k(x1,xn)
k(x2,x1) k(x2,x2) . . . k(x2,xn)

...
...

. . .
...

k(xn,x1) k(xn,x2) . . . k(xn,xn)



Use top/bottom eigenvectors of Gram matrix as embedding

Works for fixed dataset x1, . . . ,xn -
but what is the embedding vector for a new data point x′?

Inference on held-out data

A common pattern:

Construct Gram matrix from kernel k(x,x′)

M =


k(x1,x1) k(x1,x2) . . . k(x1,xn)
k(x2,x1) k(x2,x2) . . . k(x2,xn)

...
...

. . .
...

k(xn,x1) k(xn,x2) . . . k(xn,xn)



Use top/bottom eigenvectors of Gram matrix as embedding

Works for fixed dataset x1, . . . ,xn -
but what is the embedding vector for a new data point x′?

Inference on held-out data

Assume data drawn x1, . . . ,xn ∼ p(x). Gram matrix is approximation
to linear operator:

1

n
M


f(x1)
f(x2)

...
f(xn)


i

=
1

n

∑
j

k(xi,xj)f(xj) ≈ Ep(x)[k(xi,x)f(x)]

= Kp[f](xi)

Bengio, Paiement, Vincent et al 2004

Inference on held-out data

Assume data drawn x1, . . . ,xn ∼ p(x). Gram matrix is approximation
to linear operator:

1

n
M


f(x1)
f(x2)

...
f(xn)


i

=
1

n

∑
j

k(xi,xj)f(xj) ≈ Ep(x)[k(xi,x)f(x)]

= Kp[f](xi)

Eigenvectors φk of M are approximation to eigenfunctions φk(·) of
linear operator Kp

Bengio, Paiement, Vincent et al 2004

Inference on held-out data

Assume data drawn x1, . . . ,xn ∼ p(x). Gram matrix is approximation
to linear operator:

1

n
M


f(x1)
f(x2)

...
f(xn)


i

=
1

n

∑
j

k(xi,xj)f(xj) ≈ Ep(x)[k(xi,x)f(x)]

= Kp[f](xi)

From eigenvalues λ1, . . . , λk and eigenvectors φ1, . . . , φk of M, can
approximate eigenfunction of Kp with Nyström method:

φk(x′) ∝
∑
i

φkik(xi,x
′)

Bengio, Paiement, Vincent et al 2004

Trade-offs of manifold learning

Exactly solvable by eigendecomposition

Trade-offs of manifold learning

Exactly solvable by eigendecomposition

Data efficient (works with O(1000) data points)

Trade-offs of manifold learning

Exactly solvable by eigendecomposition

Data efficient (works with O(1000) data points)

Unsupervised learning without a generative model

Trade-offs of manifold learning

Exactly solvable by eigendecomposition

Data efficient (works with O(1000) data points)

Unsupervised learning without a generative model

Learning scales as O(nlogn) with size of training data

Trade-offs of manifold learning

Exactly solvable by eigendecomposition

Data efficient (works with O(1000) data points)

Unsupervised learning without a generative model

Learning scales as O(nlogn) with size of training data

Inference scales as O(n) with size of training data

Trade-offs of manifold learning

Exactly solvable by eigendecomposition

Data efficient (works with O(1000) data points)

Unsupervised learning without a generative model

Learning scales as O(nlogn) with size of training data

Inference scales as O(n) with size of training data

Performance degrades for noisy or clustered data

Trade-offs of manifold learning

Exactly solvable by eigendecomposition

Data efficient (works with O(1000) data points)

Unsupervised learning without a generative model

Learning scales as O(nlogn) with size of training data

Inference scales as O(n) with size of training data

Performance degrades for noisy or clustered data

Embeddings collapse on more complex data

Trade-offs of manifold learning

Exactly solvable by eigendecomposition

Data efficient (works with O(1000) data points)

Unsupervised learning without a generative model

Learning scales as O(nlogn) with size of training data

Inference scales as O(n) with size of training data

Performance degrades for noisy or clustered data

Embeddings collapse on more complex data

Other methods have become popular for low-dimensional visualization -
especially t-SNE (Maaten and Hinton 2008)

Collapsed embeddings

Hadsell, Chopra and LeCun 2006

Improving spectral embeddings

Bottom eigenfunctions of graph Laplacian of evenly-scaled grid are
natural coordinates

Bottom eigenfunctions of unevely-scaled grid are not

Eigenfunctions must be orthogonal, but can still be predictable, e.g.
sin(2x) and sin(x) and cos(x).

Instead of using lowest eigenfunctions as embedding, use lowest
eigenfunctions that are unpredictable from lower eigenfunctions

Pfau and Burgess 2018

Improving spectral embeddings

Bottom eigenfunctions of graph Laplacian of evenly-scaled grid are
natural coordinates

Bottom eigenfunctions of unevely-scaled grid are not

Eigenfunctions must be orthogonal, but can still be predictable, e.g.
sin(2x) and sin(x) and cos(x).

Instead of using lowest eigenfunctions as embedding, use lowest
eigenfunctions that are unpredictable from lower eigenfunctions

Pfau and Burgess 2018

Improving spectral embeddings

Bottom eigenfunctions of graph Laplacian of evenly-scaled grid are
natural coordinates

Bottom eigenfunctions of unevely-scaled grid are not

Eigenfunctions must be orthogonal, but can still be predictable, e.g.
sin(2x) and sin(x) and cos(x).

Instead of using lowest eigenfunctions as embedding, use lowest
eigenfunctions that are unpredictable from lower eigenfunctions

Pfau and Burgess 2018

Improving spectral embeddings

Bottom eigenfunctions of graph Laplacian of evenly-scaled grid are
natural coordinates

Bottom eigenfunctions of unevely-scaled grid are not

Eigenfunctions must be orthogonal, but can still be predictable, e.g.
sin(2x) and sin(x) and cos(x).

Instead of using lowest eigenfunctions as embedding, use lowest
eigenfunctions that are unpredictable from lower eigenfunctions

Pfau and Burgess 2018

Minimally redundant Laplacian eigenmaps

After adding eigenfunctions φ1, . . . , φd to
embedding, evaluate φd+1 as candidate.

If value of φd+1 at point i can be predicted
from nearest neighbors of i in φ1, . . . , φd,
eigenfunction is too predictable

Pfau and Burgess 2018

Minimally redundant Laplacian eigenmaps

After adding eigenfunctions φ1, . . . , φd to
embedding, evaluate φd+1 as candidate.

If value of φd+1 at point i can be predicted
from nearest neighbors of i in φ1, . . . , φd,
eigenfunction is too predictable

Pfau and Burgess 2018

Minimally redundant Laplacian eigenmaps

NORB: Model dataset for studying invariance in object recognition

Pfau and Burgess 2018; LeCun, Huang and Bottou 2005

Minimally redundant Laplacian eigenmaps

NORB: Model dataset for studying invariance in object recognition

Consider a single object under different lighting and rotation

Pfau and Burgess 2018; LeCun, Huang and Bottou 2005

Minimally redundant Laplacian eigenmaps

Pfau and Burgess 2018

Minimally redundant Laplacian eigenmaps

With filtering by redundancy, all variation captured by 6 eigenfunctions

Pfau and Burgess 2018

Minimally redundant Laplacian eigenmaps

With filtering by redundancy, all variation captured by 6 eigenfunctions
Works with less than 1000 points!

Pfau and Burgess 2018

Minimally redundant Laplacian eigenmaps

Disentangling VAEs learn the dimension but not the topology

Laplacian eigenmaps learns the topology but misses some dimensions

Pfau and Burgess 2018

Minimally redundant Laplacian eigenmaps

β-VAE

Disentangling VAEs learn the dimension but not the topology

Laplacian eigenmaps learns the topology but misses some dimensions

Pfau and Burgess 2018

Minimally redundant Laplacian eigenmaps

β-VAE Laplacian eigenmaps

Disentangling VAEs learn the dimension but not the topology

Laplacian eigenmaps learns the topology but misses some dimensions

Pfau and Burgess 2018

Trade-offs of manifold learning

Exactly solvable by eigendecomposition

Data efficient (works with O(1000) data points)

Unsupervised learning without a generative model

Learning scales as O(nlogn) with size of training data

Inference scales as O(n) with size of training data

Performance degrades for noisy or clustered data

Embeddings collapse on more complex data

Trade-offs of manifold learning

Exactly solvable by eigendecomposition

Data efficient (works with O(1000) data points)

Unsupervised learning without a generative model

Learning scales as O(nlogn) with size of training data

Inference scales as O(n) with size of training data

Performance degrades for noisy or clustered data

Collapsed embeddings can be fixed by choice of eigenvector

Trade-offs of manifold learning

Exactly solvable by eigendecomposition

Data efficient (works with O(1000) data points)

Unsupervised learning without a generative model

Learning scales as O(nlogn) with size of training data

Inference scales as O(n) with size of training data

Performance degrades for noisy or clustered data

Collapsed embeddings can be fixed by choice of eigenvector

Can discover topology of data without prior assumptions

Part IIb

Embedding Hierarchies in
Hyperbolic Spaces

Hierarchical data

Some data can be embedded uniformly in flat space

Hierarchical data

What about data with hierarchical structure?

Hierarchical data

b0

b1

b2

b3

rN−1

(2r)N−1

(3r)N−1

(4r)N−1

Tree with branching factor b has b` nodes at layer ` - exponential growth

Area of sphere in RN with radius r grows as rN−1 - polynomial growth

Hierarchical data

Idea: embed nodes in hierarchy in hyperbolic space instead of flat space

Hyperbolic geometry

Hyperbolic space: manifold with constant
negative curvature

Angles of triangle add to less than 180
degrees

Surface area of spheres grows exponentially!

Many possible models of hyperbolic space

Hyperbolic geometry

Hyperbolic space: manifold with constant
negative curvature

Angles of triangle add to less than 180
degrees

Surface area of spheres grows exponentially!

Many possible models of hyperbolic space

Hyperbolic geometry

Hyperbolic space: manifold with constant
negative curvature

Angles of triangle add to less than 180
degrees

Surface area of spheres grows exponentially!

Many possible models of hyperbolic space

Hyperbolic geometry

Hyperbolic space: manifold with constant
negative curvature

Angles of triangle add to less than 180
degrees

Surface area of spheres grows exponentially!

Many possible models of hyperbolic space

The Poincaré ball

Maps hyperbolic space to open ball BN

Metric: 〈u,v〉TxP =
(

2
1−xTx

)2
uTv

Geodesics: Circles that are orthogonal to
boundary of ball

Distances:
d(u,v) = arcosh

(
1 + 2 ||u−v||2

(1−||u||2)(1−||v||2)

)

Nickel and Kiela 2017

The Poincaré ball

Maps hyperbolic space to open ball BN

Metric: 〈u,v〉TxP =
(

2
1−xTx

)2
uTv

Geodesics: Circles that are orthogonal to
boundary of ball

Distances:
d(u,v) = arcosh

(
1 + 2 ||u−v||2

(1−||u||2)(1−||v||2)

)

Nickel and Kiela 2017

The Poincaré ball

Maps hyperbolic space to open ball BN

Metric: 〈u,v〉TxP =
(

2
1−xTx

)2
uTv

Geodesics: Circles that are orthogonal to
boundary of ball

Distances:
d(u,v) = arcosh

(
1 + 2 ||u−v||2

(1−||u||2)(1−||v||2)

)

Nickel and Kiela 2017

The Poincaré ball

Maps hyperbolic space to open ball BN

Metric: 〈u,v〉TxP =
(

2
1−xTx

)2
uTv

Geodesics: Circles that are orthogonal to
boundary of ball

Distances:
d(u,v) = arcosh

(
1 + 2 ||u−v||2

(1−||u||2)(1−||v||2)

)

Nickel and Kiela 2017

Poincaré embeddings for learning hierarchical
representation

Given edges E from a graph, find an embedding ui for vertex i that
minimizes: ∑

i,j∈E
log

e−d(ui,uj)∑
j′ st ij′ /∈E e

−d(ui,uj′)

Nickel and Kiela 2017

Poincaré embeddings for learning hierarchical
representation

Given edges E from a graph, find an embedding ui for vertex i that
minimizes: ∑

i,j∈E
log

e−d(ui,uj)∑
j′ st ij′ /∈E e

−d(ui,uj′)

Nickel and Kiela 2017

Poincaré embeddings for learning hierarchical
representation

Given edges E from a graph, find an embedding ui for vertex i that
minimizes: ∑

i,j∈E
log

e−d(ui,uj)∑
j′ st ij′ /∈E e

−d(ui,uj′)

State of the art results on link reconstruction and link prediction on
WordNet noun dataset

Nickel and Kiela 2017

Poincaré embeddings for learning hierarchical
representation

Given edges E from a graph, find an embedding ui for vertex i that
minimizes: ∑

i,j∈E
log

e−d(ui,uj)∑
j′ st ij′ /∈E e

−d(ui,uj′)

State of the art results on graded lexical entailment on HyperLex

Nickel and Kiela 2017

Trade-offs of Poincaré model

Geodesics are simple

Trade-offs of Poincaré model

Geodesics are simple

Metric is diagonal

Trade-offs of Poincaré model

Geodesics are simple

Metric is diagonal

Gradients of metric are unstable near boundary

The Lorentz model

Maps N -dim hyperbolic space to surface in
RN+1

〈u,v〉L = −u0v0 +
∑N+1
i=1 uivi

HN = {x ∈ RN+1 : 〈x,x〉L = −1, x0 > 0}

Metric: 〈u,v〉TxL = 〈u,v〉L
Geodesics: starting at x and going in
direction v, ||v||L = 1

expx(tv) = cosh(t)x + sinh(t)v

Projection: maps vectors onto tangent space:

projx(u) = u + 〈x,u〉L

Nickel and Kiela 2018

The Lorentz model

Maps N -dim hyperbolic space to surface in
RN+1

〈u,v〉L = −u0v0 +
∑N+1
i=1 uivi

HN = {x ∈ RN+1 : 〈x,x〉L = −1, x0 > 0}

Metric: 〈u,v〉TxL = 〈u,v〉L
Geodesics: starting at x and going in
direction v, ||v||L = 1

expx(tv) = cosh(t)x + sinh(t)v

Projection: maps vectors onto tangent space:

projx(u) = u + 〈x,u〉L

Nickel and Kiela 2018

The Lorentz model

Maps N -dim hyperbolic space to surface in
RN+1

〈u,v〉L = −u0v0 +
∑N+1
i=1 uivi

HN = {x ∈ RN+1 : 〈x,x〉L = −1, x0 > 0}

Metric: 〈u,v〉TxL = 〈u,v〉L
Geodesics: starting at x and going in
direction v, ||v||L = 1

expx(tv) = cosh(t)x + sinh(t)v

Projection: maps vectors onto tangent space:

projx(u) = u + 〈x,u〉L

Nickel and Kiela 2018

The Lorentz model

Maps N -dim hyperbolic space to surface in
RN+1

〈u,v〉L = −u0v0 +
∑N+1
i=1 uivi

HN = {x ∈ RN+1 : 〈x,x〉L = −1, x0 > 0}

Metric: 〈u,v〉TxL = 〈u,v〉L

Geodesics: starting at x and going in
direction v, ||v||L = 1

expx(tv) = cosh(t)x + sinh(t)v

Projection: maps vectors onto tangent space:

projx(u) = u + 〈x,u〉L

Nickel and Kiela 2018

The Lorentz model

Maps N -dim hyperbolic space to surface in
RN+1

〈u,v〉L = −u0v0 +
∑N+1
i=1 uivi

HN = {x ∈ RN+1 : 〈x,x〉L = −1, x0 > 0}

Metric: 〈u,v〉TxL = 〈u,v〉L
Geodesics: starting at x and going in
direction v, ||v||L = 1

expx(tv) = cosh(t)x + sinh(t)v

Projection: maps vectors onto tangent space:

projx(u) = u + 〈x,u〉L

Nickel and Kiela 2018

The Lorentz model

Maps N -dim hyperbolic space to surface in
RN+1

〈u,v〉L = −u0v0 +
∑N+1
i=1 uivi

HN = {x ∈ RN+1 : 〈x,x〉L = −1, x0 > 0}

Metric: 〈u,v〉TxL = 〈u,v〉L
Geodesics: starting at x and going in
direction v, ||v||L = 1

expx(tv) = cosh(t)x + sinh(t)v

Projection: maps vectors onto tangent space:

projx(u) = u + 〈x,u〉L

Nickel and Kiela 2018

Riemannian SGD

Scale Euclidean gradient by inverse metric:

h = M−1
x ∇f(x)

Project gradient onto tangent space:

gradf(x) = proj(h)

Follow geodesic along Riemannian gradient:

x← expx(−ηgradf(x))

Bonnabel 2013

Riemannian SGD

Scale Euclidean gradient by inverse metric:

h = M−1
x ∇f(x)

Project gradient onto tangent space:

gradf(x) = proj(h)

Follow geodesic along Riemannian gradient:

x← expx(−ηgradf(x))

Bonnabel 2013

Riemannian SGD

Scale Euclidean gradient by inverse metric:

h = M−1
x ∇f(x)

Project gradient onto tangent space:

gradf(x) = proj(h)

Follow geodesic along Riemannian gradient:

x← expx(−ηgradf(x))

Bonnabel 2013

Learning continuous hierarchies in the Lorentz model

Significant improvement over Poincaré, especially in low dimensions

Nickel and Kiela 2018

Hyperbolic Attention Networks

Imposes hyperbolic geometry on activations of deep network with attention

Gulcehre, Denil, Malinowski et al 2018

Part IIc

Analyzing the Geometry of
Deep Generative Models

What is the shape of latent space?

Are straight lines in latent space really straight?

What is the right notion of distance in latent space?

Higgins, Matthey, Pal et al 2017

What is the shape of latent space?

Are straight lines in latent space really straight?

What is the right notion of distance in latent space?

Higgins, Matthey, Pal et al 2017

What is the shape of latent space?

Are straight lines in latent space really straight?

What is the right notion of distance in latent space?

Higgins, Matthey, Pal et al 2017

Latent space metric

z

∆z1
∆z2

Jz∆z1 Jz∆z2

Deep generative model with decoder f(z)

Manifold X generated by f has tangent space TzX = span(Jz) where
Jz is Jacobian of f at z

Use `2 metric in observation space as metric in latent space:

〈∆z1,∆z2〉TzX = ∆zT1 JTz Jz∆z2 = ∆zT1 Mz∆z2

Arvanitidis, Hansen and Hauberg 2018

Latent space metric

z

∆z1
∆z2

Jz∆z1 Jz∆z2

Deep generative model with decoder f(z)

Manifold X generated by f has tangent space TzX = span(Jz) where
Jz is Jacobian of f at z

Use `2 metric in observation space as metric in latent space:

〈∆z1,∆z2〉TzX = ∆zT1 JTz Jz∆z2 = ∆zT1 Mz∆z2

Arvanitidis, Hansen and Hauberg 2018

Latent space metric

z

∆z1
∆z2

Jz∆z1 Jz∆z2

Deep generative model with decoder f(z)

Manifold X generated by f has tangent space TzX = span(Jz) where
Jz is Jacobian of f at z

Use `2 metric in observation space as metric in latent space:

〈∆z1,∆z2〉TzX = ∆zT1 JTz Jz∆z2 = ∆zT1 Mz∆z2

Arvanitidis, Hansen and Hauberg 2018

Geodesic equation

How do we derive the geodesic equation from the introduction:
γ̈ = −Γγ(t) (γ̇(t), γ̇(t))

γ∗ = min
γ
S[γ] = min

γ

∫ 1

0

dtL(γ, γ̇, t)

= min
γ

∫ 1

0

dt
〈

˙γ(t), ˙γ(t)
〉
Tγ(t)X

= min
γ

∫ 1

0

dt
∑
ij

Mij
γ(t)γ̇i(t)γ̇j(t)

Euler-Lagrange equation:

∂L

∂γ∗
=

d

dt

∂L

∂γ̇∗

Exercise: Derive the left and right side of the Euler-Lagrange equation
for L(γ, γ̇, t) =

∑
ij Mij

γ(t)γ̇i(t)γ̇j(t)

Geodesic equation

How do we derive the geodesic equation from the introduction:
γ̈ = −Γγ(t) (γ̇(t), γ̇(t))

γ∗ = min
γ
S[γ] = min

γ

∫ 1

0

dtL(γ, γ̇, t)

= min
γ

∫ 1

0

dt
〈

˙γ(t), ˙γ(t)
〉
Tγ(t)X

= min
γ

∫ 1

0

dt
∑
ij

Mij
γ(t)γ̇i(t)γ̇j(t)

Euler-Lagrange equation:

∂L

∂γ∗
=

d

dt

∂L

∂γ̇∗

Exercise: Derive the left and right side of the Euler-Lagrange equation
for L(γ, γ̇, t) =

∑
ij Mij

γ(t)γ̇i(t)γ̇j(t)

Geodesic equation

How do we derive the geodesic equation from the introduction:
γ̈ = −Γγ(t) (γ̇(t), γ̇(t))

γ∗ = min
γ
S[γ] = min

γ

∫ 1

0

dtL(γ, γ̇, t)

= min
γ

∫ 1

0

dt
〈

˙γ(t), ˙γ(t)
〉
Tγ(t)X

= min
γ

∫ 1

0

dt
∑
ij

Mij
γ(t)γ̇i(t)γ̇j(t)

Euler-Lagrange equation:

∂L

∂γ∗
=

d

dt

∂L

∂γ̇∗

Exercise: Derive the left and right side of the Euler-Lagrange equation
for L(γ, γ̇, t) =

∑
ij Mij

γ(t)γ̇i(t)γ̇j(t)

Geodesic equation

How do we derive the geodesic equation from the introduction:
γ̈ = −Γγ(t) (γ̇(t), γ̇(t))

γ∗ = min
γ
S[γ] = min

γ

∫ 1

0

dtL(γ, γ̇, t)

= min
γ

∫ 1

0

dt
〈

˙γ(t), ˙γ(t)
〉
Tγ(t)X

= min
γ

∫ 1

0

dt
∑
ij

Mij
γ(t)γ̇i(t)γ̇j(t)

Euler-Lagrange equation:

∂L

∂γ∗
=

d

dt

∂L

∂γ̇∗

Exercise: Derive the left and right side of the Euler-Lagrange equation
for L(γ, γ̇, t) =

∑
ij Mij

γ(t)γ̇i(t)γ̇j(t)

Geodesic equation

How do we derive the geodesic equation from the introduction:
γ̈ = −Γγ(t) (γ̇(t), γ̇(t))

γ∗ = min
γ
S[γ] = min

γ

∫ 1

0

dtL(γ, γ̇, t)

= min
γ

∫ 1

0

dt
〈

˙γ(t), ˙γ(t)
〉
Tγ(t)X

= min
γ

∫ 1

0

dt
∑
ij

Mij
γ(t)γ̇i(t)γ̇j(t)

Euler-Lagrange equation:

∂L

∂γ∗
=

d

dt

∂L

∂γ̇∗

Exercise: Derive the left and right side of the Euler-Lagrange equation
for L(γ, γ̇, t) =

∑
ij Mij

γ(t)γ̇i(t)γ̇j(t)

Geodesic equation

How do we derive the geodesic equation from the introduction:
γ̈ = −Γγ(t) (γ̇(t), γ̇(t))

γ∗ = min
γ
S[γ] = min

γ

∫ 1

0

dtL(γ, γ̇, t)

= min
γ

∫ 1

0

dt
〈

˙γ(t), ˙γ(t)
〉
Tγ(t)X

= min
γ

∫ 1

0

dt
∑
ij

Mij
γ(t)γ̇i(t)γ̇j(t)

Euler-Lagrange equation:

∂L

∂γ∗
=

d

dt

∂L

∂γ̇∗

Exercise: Derive the left and right side of the Euler-Lagrange equation
for L(γ, γ̇, t) =

∑
ij Mij

γ(t)γ̇i(t)γ̇j(t)

Geodesic equation

∂L

∂γi
=
∑
jk

∂Mjk
γ(t)

∂γi
γ̇k(t)γ̇j(t)

d

dt

∂L

∂γ̇i
=

d

dt

2
∑
j

Mij
γ(t)γ̇j(t)

 = 2
∑
j

[
∂Mij

γ(t)

∂t
γ̇j(t) + Mij

γ(t)γ̈j(t)

]

= 2
∑
j

[∑
k

∂Mij
γ(t)

∂γk
γ̇k(t)γ̇j(t) + Mij

γ(t)γ̈j(t)

]

Geodesic equation

∂L

∂γi
=
∑
jk

∂Mjk
γ(t)

∂γi
γ̇k(t)γ̇j(t)

d

dt

∂L

∂γ̇i
=

d

dt

2
∑
j

Mij
γ(t)γ̇j(t)

 = 2
∑
j

[
∂Mij

γ(t)

∂t
γ̇j(t) + Mij

γ(t)γ̈j(t)

]

= 2
∑
j

[∑
k

∂Mij
γ(t)

∂γk
γ̇k(t)γ̇j(t) + Mij

γ(t)γ̈j(t)

]

Geodesic equation

∂L

∂γi
=
∑
jk

∂Mjk
γ(t)

∂γi
γ̇k(t)γ̇j(t)

d

dt

∂L

∂γ̇i
=

d

dt

2
∑
j

Mij
γ(t)γ̇j(t)

 = 2
∑
j

[
∂Mij

γ(t)

∂t
γ̇j(t) + Mij

γ(t)γ̈j(t)

]

= 2
∑
j

[∑
k

∂Mij
γ(t)

∂γk
γ̇k(t)γ̇j(t) + Mij

γ(t)γ̈j(t)

]

γ̈j(t) = − 1
2

∑
i

(
M−1

γ(t)

)ij∑
k

[(
2
∂Mij

γ(t)

∂γk
−

∂Mjk
γ(t)

∂γi

)
γ̇k(t)γ̇j(t)

]

Geodesic equation

∂L

∂γi
=
∑
jk

∂Mjk
γ(t)

∂γi
γ̇k(t)γ̇j(t)

d

dt

∂L

∂γ̇i
=

d

dt

2
∑
j

Mij
γ(t)γ̇j(t)

 = 2
∑
j

[
∂Mij

γ(t)

∂t
γ̇j(t) + Mij

γ(t)γ̈j(t)

]

= 2
∑
j

[∑
k

∂Mij
γ(t)

∂γk
γ̇k(t)γ̇j(t) + Mij

γ(t)γ̈j(t)

]

γ̈j(t) = −
∑
ik Γikj (γ(t))γ̇k(t)γ̇j(t)

Γikj (x) = 1
2

(
M−1

x

)ij (
2
∂Mij

x

∂xk
− ∂Mjk

x

∂xi

)

Geodesic equation

∂L

∂γi
=
∑
jk

∂Mjk
γ(t)

∂γi
γ̇k(t)γ̇j(t)

d

dt

∂L

∂γ̇i
=

d

dt

2
∑
j

Mij
γ(t)γ̇j(t)

 = 2
∑
j

[
∂Mij

γ(t)

∂t
γ̇j(t) + Mij

γ(t)γ̈j(t)

]

= 2
∑
j

[∑
k

∂Mij
γ(t)

∂γk
γ̇k(t)γ̇j(t) + Mij

γ(t)γ̈j(t)

]

γ̈j(t) = −
∑
ik Γikj (γ(t))γ̇k(t)γ̇j(t)

Γikj (x) = 1
2

(
M−1

x

)ij (
2
∂Mij

x

∂xk
− ∂Mjk

x

∂xi

)
Γikj (x) are the parameters of the Levi-Civita connection:

unique connection induced by the metric

The geodesics of deep generative models

Classification from latent representations is better

Arvanitidis, Hansen and Hauberg 2018

The geodesics of deep generative models

Classification from latent representations is better

Transitions along geodesics are smoother

Arvanitidis, Hansen and Hauberg 2018

Summary

Differential geometry and spectral theory are a powerful suite of tools
for thinking about the geometry of data

Straight lines generalize to geodesics, which are defined from the local
metric structure

The spectrum of the Laplacian generalizes Fourier analysis to graphs
and manifolds

Classic manifold learning uses spectral decompositions to map data
manifolds in high-dim space to flat space

Hierarchical data is naturally mapped to hyperbolic space

The latent space of deep generative models is better understood as
being curved

Summary

Differential geometry and spectral theory are a powerful suite of tools
for thinking about the geometry of data

Straight lines generalize to geodesics, which are defined from the local
metric structure

The spectrum of the Laplacian generalizes Fourier analysis to graphs
and manifolds

Classic manifold learning uses spectral decompositions to map data
manifolds in high-dim space to flat space

Hierarchical data is naturally mapped to hyperbolic space

The latent space of deep generative models is better understood as
being curved

Summary

Differential geometry and spectral theory are a powerful suite of tools
for thinking about the geometry of data

Straight lines generalize to geodesics, which are defined from the local
metric structure

The spectrum of the Laplacian generalizes Fourier analysis to graphs
and manifolds

Classic manifold learning uses spectral decompositions to map data
manifolds in high-dim space to flat space

Hierarchical data is naturally mapped to hyperbolic space

The latent space of deep generative models is better understood as
being curved

Summary

Differential geometry and spectral theory are a powerful suite of tools
for thinking about the geometry of data

Straight lines generalize to geodesics, which are defined from the local
metric structure

The spectrum of the Laplacian generalizes Fourier analysis to graphs
and manifolds

Classic manifold learning uses spectral decompositions to map data
manifolds in high-dim space to flat space

Hierarchical data is naturally mapped to hyperbolic space

The latent space of deep generative models is better understood as
being curved

Summary

Differential geometry and spectral theory are a powerful suite of tools
for thinking about the geometry of data

Straight lines generalize to geodesics, which are defined from the local
metric structure

The spectrum of the Laplacian generalizes Fourier analysis to graphs
and manifolds

Classic manifold learning uses spectral decompositions to map data
manifolds in high-dim space to flat space

Hierarchical data is naturally mapped to hyperbolic space

The latent space of deep generative models is better understood as
being curved

Summary

Differential geometry and spectral theory are a powerful suite of tools
for thinking about the geometry of data

Straight lines generalize to geodesics, which are defined from the local
metric structure

The spectrum of the Laplacian generalizes Fourier analysis to graphs
and manifolds

Classic manifold learning uses spectral decompositions to map data
manifolds in high-dim space to flat space

Hierarchical data is naturally mapped to hyperbolic space

The latent space of deep generative models is better understood as
being curved

Part III

Spectral Deep Learning

Part IIIa

Convolutions on
Graphs and Manifolds

Key properties of CNNs

Convolutional (Translation invariance)

LeCun et al. 1989

Key properties of CNNs

Convolutional (Translation invariance)

Scale Separation (Compositionality)

LeCun et al. 1989

Key properties of CNNs

Convolutional (Translation invariance)

Scale Separation (Compositionality)

Filters localized in space (Deformation Stability)

LeCun et al. 1989

Key properties of CNNs

Convolutional (Translation invariance)

Scale Separation (Compositionality)

Filters localized in space (Deformation Stability)

O(1) parameters per filter (independent of input image size n)

LeCun et al. 1989

Key properties of CNNs

Convolutional (Translation invariance)

Scale Separation (Compositionality)

Filters localized in space (Deformation Stability)

O(1) parameters per filter (independent of input image size n)

O(n) complexity per layer (filtering done in the spatial domain)

LeCun et al. 1989

Key properties of CNNs

Convolutional (Translation invariance)

Scale Separation (Compositionality)

Filters localized in space (Deformation Stability)

O(1) parameters per filter (independent of input image size n)

O(n) complexity per layer (filtering done in the spatial domain)

O(log n) layers in classification tasks

LeCun et al. 1989

CNNs and Euclidean Geometry

CNNs are defined over Euclidean domains or Grids Ω. Two fundamental
properties:

Translation Invariance (yielding convolutions).

Multiscale structure (yielding downsampling).

Inductive bias that exploits stationarity and deformation stability of
many tasks.

CNNs and Euclidean Geometry

CNNs are defined over Euclidean domains or Grids Ω. Two fundamental
properties:

Translation Invariance (yielding convolutions).

Multiscale structure (yielding downsampling).

Inductive bias that exploits stationarity and deformation stability of
many tasks.

Roadmap: extend CNNs to non-Euclidean geometries by replacing
filtering and pooling by appropriate operators

Convolution: Euclidean space

Given two functions f, g : [−π, π]→ R their convolution is a function

(f ? g)(x) =

∫ π

−π
f(x′)g(x− x′)dx′

Shift-invariance: f(x− x0) ? g(x) = (f ? g)(x− x0)

Convolution theorem: Fourier transform diagonalizes the convolution operator

⇒ convolution can be computed in the Fourier domain as

(̂f ? g) = f̂ · ĝ

Efficient computation using FFT

Convolution: Euclidean space

Given two functions f, g : [−π, π]→ R their convolution is a function

(f ? g)(x) =

∫ π

−π
f(x′)g(x− x′)dx′

Shift-invariance: f(x− x0) ? g(x) = (f ? g)(x− x0)

Convolution theorem: Fourier transform diagonalizes the convolution operator

⇒ convolution can be computed in the Fourier domain as

(̂f ? g) = f̂ · ĝ

Efficient computation using FFT

Convolution: Euclidean space

Given two functions f, g : [−π, π]→ R their convolution is a function

(f ? g)(x) =

∫ π

−π
f(x′)g(x− x′)dx′

Shift-invariance: f(x− x0) ? g(x) = (f ? g)(x− x0)

Convolution theorem: Fourier transform diagonalizes the convolution operator

⇒ convolution can be computed in the Fourier domain as

(̂f ? g) = f̂ · ĝ

Efficient computation using FFT

Convolution: Euclidean space

Given two functions f, g : [−π, π]→ R their convolution is a function

(f ? g)(x) =

∫ π

−π
f(x′)g(x− x′)dx′

Shift-invariance: f(x− x0) ? g(x) = (f ? g)(x− x0)

Convolution theorem: Fourier transform diagonalizes the convolution operator
⇒ convolution can be computed in the Fourier domain as

(̂f ? g) = f̂ · ĝ

Efficient computation using FFT

Convolution: Euclidean space

Given two functions f, g : [−π, π]→ R their convolution is a function

(f ? g)(x) =

∫ π

−π
f(x′)g(x− x′)dx′

Shift-invariance: f(x− x0) ? g(x) = (f ? g)(x− x0)

Convolution theorem: Fourier transform diagonalizes the convolution operator
⇒ convolution can be computed in the Fourier domain as

(̂f ? g) = f̂ · ĝ

Efficient computation using FFT

Convolution Theorem

Convolution of two vectors f = (f1, . . . , fn)> and g = (g1, . . . , gn)>

f ? g =


g1 g2 gn
gn g1 g2 . . . gn−1
...

...
. . .

. . .
...

g3 g4 . . . g1 g2
g2 g3 g1



︸ ︷︷ ︸

 f1
...
fn



=

Convolution Theorem

Convolution of two vectors f = (f1, . . . , fn)> and g = (g1, . . . , gn)>

f ? g =


g1 g2 gn
gn g1 g2 . . . gn−1
...

...
. . .

. . .
...

g3 g4 . . . g1 g2
g2 g3 g1


︸ ︷︷ ︸

circulant matrix

 f1
...
fn



=

Convolution Theorem

Convolution of two vectors f = (f1, . . . , fn)> and g = (g1, . . . , gn)>

f ? g =


g1 g2 gn
gn g1 g2 . . . gn−1
...

...
. . .

. . .
...

g3 g4 . . . g1 g2
g2 g3 g1


︸ ︷︷ ︸

diagonalized by Fourier basis

 f1
...
fn



=

Convolution Theorem

Convolution of two vectors f = (f1, . . . , fn)> and g = (g1, . . . , gn)>

f ? g =


g1 g2 gn
gn g1 g2 . . . gn−1
...

...
. . .

. . .
...

g3 g4 . . . g1 g2
g2 g3 g1



︸ ︷︷ ︸
diagonalized by Fourier basis

 f1
...
fn



= Φ

 ĝ1
. . .

ĝn

Φ>f

Convolution Theorem

Convolution of two vectors f = (f1, . . . , fn)> and g = (g1, . . . , gn)>

f ? g =


g1 g2 gn
gn g1 g2 . . . gn−1
...

...
. . .

. . .
...

g3 g4 . . . g1 g2
g2 g3 g1



︸ ︷︷ ︸
diagonalized by Fourier basis

 f1
...
fn



= Φ

 ĝ1
. . .

ĝn


 f̂1

...

f̂n



Convolution Theorem

Convolution of two vectors f = (f1, . . . , fn)> and g = (g1, . . . , gn)>

f ? g =


g1 g2 gn
gn g1 g2 . . . gn−1
...

...
. . .

. . .
...

g3 g4 . . . g1 g2
g2 g3 g1



︸ ︷︷ ︸
diagonalized by Fourier basis

 f1
...
fn



= Φ

 f̂1 · ĝ1
...

f̂n · ĝn



Spectral convolution

Spectral convolution of f ,g ∈ L2(V) can be defined by analogy

f ? g =
∑
k≥1

〈f ,φk〉L2(V)〈g,φk〉L2(V)

︸ ︷︷ ︸
product in the Fourier domain

φk

︸ ︷︷ ︸
inverse Fourier transform

In matrix-vector notation
f ? g =

Not shift-invariant! (G has no circulant structure)

Filter coefficients depend on basis φ1, . . . ,φn

Spectral convolution

Spectral convolution of f ,g ∈ L2(V) can be defined by analogy

f ? g =
∑
k≥1

〈f ,φk〉L2(V)〈g,φk〉L2(V)︸ ︷︷ ︸
product in the Fourier domain

φk

︸ ︷︷ ︸
inverse Fourier transform

In matrix-vector notation
f ? g =

Not shift-invariant! (G has no circulant structure)

Filter coefficients depend on basis φ1, . . . ,φn

Spectral convolution

Spectral convolution of f ,g ∈ L2(V) can be defined by analogy

f ? g =
∑
k≥1

〈f ,φk〉L2(V)〈g,φk〉L2(V)︸ ︷︷ ︸
product in the Fourier domain

φk

︸ ︷︷ ︸
inverse Fourier transform

In matrix-vector notation
f ? g =

Not shift-invariant! (G has no circulant structure)

Filter coefficients depend on basis φ1, . . . ,φn

Spectral convolution

Spectral convolution of f ,g ∈ L2(V) can be defined by analogy

f ? g =
∑
k≥1

〈f ,φk〉L2(V)〈g,φk〉L2(V)

︸ ︷︷ ︸
product in the Fourier domain

φk

︸ ︷︷ ︸
inverse Fourier transform

In matrix-vector notation

f ? g = Φ (Φ>g) ◦ (Φ>f)

Not shift-invariant! (G has no circulant structure)

Filter coefficients depend on basis φ1, . . . ,φn

Spectral convolution

Spectral convolution of f ,g ∈ L2(V) can be defined by analogy

f ? g =
∑
k≥1

〈f ,φk〉L2(V)〈g,φk〉L2(V)

︸ ︷︷ ︸
product in the Fourier domain

φk

︸ ︷︷ ︸
inverse Fourier transform

In matrix-vector notation

f ? g = Φ diag(ĝ1, . . . , ĝn)Φ>

︸ ︷︷ ︸
G

f

Not shift-invariant! (G has no circulant structure)

Filter coefficients depend on basis φ1, . . . ,φn

Spectral convolution

Spectral convolution of f ,g ∈ L2(V) can be defined by analogy

f ? g =
∑
k≥1

〈f ,φk〉L2(V)〈g,φk〉L2(V)

︸ ︷︷ ︸
product in the Fourier domain

φk

︸ ︷︷ ︸
inverse Fourier transform

In matrix-vector notation

f ? g = Φ diag(ĝ1, . . . , ĝn)Φ>︸ ︷︷ ︸
G

f

Not shift-invariant! (G has no circulant structure)

Filter coefficients depend on basis φ1, . . . ,φn

Spectral convolution

Spectral convolution of f ,g ∈ L2(V) can be defined by analogy

f ? g =
∑
k≥1

〈f ,φk〉L2(V)〈g,φk〉L2(V)

︸ ︷︷ ︸
product in the Fourier domain

φk

︸ ︷︷ ︸
inverse Fourier transform

In matrix-vector notation

f ? g = Φ diag(ĝ1, . . . , ĝn)Φ>︸ ︷︷ ︸
G

f

Not shift-invariant! (G has no circulant structure)

Filter coefficients depend on basis φ1, . . . ,φn

Spectral convolution

Spectral convolution of f ,g ∈ L2(V) can be defined by analogy

f ? g =
∑
k≥1

〈f ,φk〉L2(V)〈g,φk〉L2(V)

︸ ︷︷ ︸
product in the Fourier domain

φk

︸ ︷︷ ︸
inverse Fourier transform

In matrix-vector notation

f ? g = Φ diag(ĝ1, . . . , ĝn)Φ>︸ ︷︷ ︸
G

f

Not shift-invariant! (G has no circulant structure)

Filter coefficients depend on basis φ1, . . . ,φn

Effect of spectral convolution

Function f

Effect of spectral convolution

‘Edge detecting’ spectral filter ΦGΦ>f

Effect of spectral convolution

Same spectral filter, different basis ΨGΨ>f

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

Effect of spectral convolution

High-frequency Laplacian eigenvector φ50

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}

Part IIIb

Spectral Graph Convolutional
Neural Networks

Spectral graph CNN

Convolution expressed in the spectral domain

g = ΦWΦ>f

where W is n× n diagonal matrix of learnable spectral filter coefficients

Filters are basis-dependent ⇒ does not generalize across graphs!

Bruna, Zaremba, Szlam, LeCun 2014

Spectral graph CNN

Convolution expressed in the spectral domain

g = ΦWΦ>f

where W is n× n diagonal matrix of learnable spectral filter coefficients

Filters are basis-dependent ⇒ does not generalize across graphs!

Bruna, Zaremba, Szlam, LeCun 2014

Spectral graph CNN

Convolution expressed in the spectral domain

g = ΦWΦ>f

where W is n× n diagonal matrix of learnable spectral filter coefficients

Filters are basis-dependent ⇒ does not generalize across graphs!

O(n) parameters per layer

Bruna, Zaremba, Szlam, LeCun 2014

Spectral graph CNN

Convolution expressed in the spectral domain

g = ΦWΦ>f

where W is n× n diagonal matrix of learnable spectral filter coefficients

Filters are basis-dependent ⇒ does not generalize across graphs!

O(n) parameters per layer

O(n2) computation of forward and inverse Fourier transforms Φ>,Φ
(no FFT on graphs)

Bruna, Zaremba, Szlam, LeCun 2014

Spectral graph CNN

Convolution expressed in the spectral domain

g = ΦWΦ>f

where W is n× n diagonal matrix of learnable spectral filter coefficients

Filters are basis-dependent ⇒ does not generalize across graphs!

O(n) parameters per layer

O(n2) computation of forward and inverse Fourier transforms Φ>,Φ
(no FFT on graphs)

No guarantee of spatial localization of filters

Bruna, Zaremba, Szlam, LeCun 2014

Localization and Smoothness

Vanishing moments: In the Euclidean setting∫ +∞

−∞
|x|2k|f(x)|2dx =

∫ +∞

−∞

∣∣∣∣∣∂kf̂(ω)

∂ωk

∣∣∣∣∣
2

dω

Localization in space = smoothness in frequency domain

Bruna, Zaremba, Szlam, LeCun 2014; Henaff, Bruna, LeCun 2015

Localization and Smoothness

Vanishing moments: In the Euclidean setting∫ +∞

−∞
|x|2k|f(x)|2dx =

∫ +∞

−∞

∣∣∣∣∣∂kf̂(ω)

∂ωk

∣∣∣∣∣
2

dω

Localization in space = smoothness in frequency domain

Bruna, Zaremba, Szlam, LeCun 2014; Henaff, Bruna, LeCun 2015

Localization and Smoothness

Vanishing moments: In the Euclidean setting∫ +∞

−∞
|x|2k|f(x)|2dx =

∫ +∞

−∞

∣∣∣∣∣∂kf̂(ω)

∂ωk

∣∣∣∣∣
2

dω

Localization in space = smoothness in frequency domain

Parametrize the filter using a smooth spectral transfer function τ(λ)

Bruna, Zaremba, Szlam, LeCun 2014; Henaff, Bruna, LeCun 2015

Localization and Smoothness

Vanishing moments: In the Euclidean setting∫ +∞

−∞
|x|2k|f(x)|2dx =

∫ +∞

−∞

∣∣∣∣∣∂kf̂(ω)

∂ωk

∣∣∣∣∣
2

dω

Localization in space = smoothness in frequency domain

Parametrize the filter using a smooth spectral transfer function τ(λ)

Application of the filter

with learnable parameters α

τ(∆)f = Φτ(Λ)Φ>f

Bruna, Zaremba, Szlam, LeCun 2014; Henaff, Bruna, LeCun 2015

Localization and Smoothness

Vanishing moments: In the Euclidean setting∫ +∞

−∞
|x|2k|f(x)|2dx =

∫ +∞

−∞

∣∣∣∣∣∂kf̂(ω)

∂ωk

∣∣∣∣∣
2

dω

Localization in space = smoothness in frequency domain

Parametrize the filter using a smooth spectral transfer function τ(λ)

Application of the filter

with learnable parameters α

τ(∆)f = Φ

 τ(λ1)
. . .

τ(λn)

Φ>f

Bruna, Zaremba, Szlam, LeCun 2014; Henaff, Bruna, LeCun 2015

Localization and Smoothness

Vanishing moments: In the Euclidean setting∫ +∞

−∞
|x|2k|f(x)|2dx =

∫ +∞

−∞

∣∣∣∣∣∂kf̂(ω)

∂ωk

∣∣∣∣∣
2

dω

Localization in space = smoothness in frequency domain

Parametrize the filter using a smooth spectral transfer function τ(λ)

Application of the parametric filter with learnable parameters α

τα(∆)f = Φ

 τα(λ1)
. . .

τα(λn)

Φ>f

Bruna, Zaremba, Szlam, LeCun 2014; Henaff, Bruna, LeCun 2015

Localization and smoothness

0 λ500

−1

+1

frequency

τ
(λ
)

Non-smooth spectral filter (delocalized in space)

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}

Localization and smoothness

0 λ500

−1

+1

frequency

τ
(λ
)

Smooth spectral filter (localized in space)

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}

Spectral graph CNN with polynomial filters (ChebNet)

Represent spectral transfer function as a polynomial or order r

τα(λ) =

r∑
j=0

αjλ
j

where α = (α0, . . . , αr)
> is the vector of filter parameters

O(1) parameters per layer

Defferrard, Bresson, Vandergheynst 2016; Kipf, Welling 2016

Spectral graph CNN with polynomial filters (ChebNet)

Represent spectral transfer function as a polynomial or order r

τα(λ) =

r∑
j=0

αjλ
j

where α = (α0, . . . , αr)
> is the vector of filter parameters

O(1) parameters per layer

Defferrard, Bresson, Vandergheynst 2016; Kipf, Welling 2016

Spectral graph CNN with polynomial filters (ChebNet)

Represent spectral transfer function as a polynomial or order r

τα(λ) =

r∑
j=0

αjλ
j

where α = (α0, . . . , αr)
> is the vector of filter parameters

O(1) parameters per layer

Filters have guaranteed r-hops support

Defferrard, Bresson, Vandergheynst 2016; Kipf, Welling 2016

Spectral graph CNN with polynomial filters (ChebNet)

Represent spectral transfer function as a polynomial or order r

τα(λ) =

r∑
j=0

αjλ
j

where α = (α0, . . . , αr)
> is the vector of filter parameters

O(1) parameters per layer

Filters have guaranteed r-hops support

No explicit computation of Φ>,Φ ⇒ O(nr) computational com-
plexity

Defferrard, Bresson, Vandergheynst 2016; Kipf, Welling 2016

Example: citation networks

Figure: Monti, Boscaini, Masci, Rodolà, Svoboda, Bronstein 2017

Example: citation networks

Method Cora1 PubMed2

Manifold Regularization3 59.5% 70.7%
Semidefinite Embedding4 59.0% 71.1%
Label Propagation5 68.0% 63.0%
DeepWalk6 67.2% 65.3%
Planetoid7 75.7% 77.2%
Spectral graph CNN8 81.6% 78.7%

Classification accuracy of different methods on citation network datasets

Data: 1,2Sen et al. 2008; methods: 3Belkin et al. 2006; 4Weston et al. 2012; 5Zhu et
al. 2003; 6Perozzi et al. 2014; 7Yang et al. 2016; 8Kipf, Welling 2016 (simplification
of ChebNet)

Graph pooling

0
1 6

4 5
2

3
7

0,1
6,7

2,3 4,5

0
3

2 1

0,1
2,3

4,5
6,7 0

1 0 1 2 3 4 5 6 7

2 3 0 1

0 1

G0 = G G1 G2 Coarsening structure

(binary tree)

Produce a sequence of coarsened graphs

Max or average pooling of collapsed vertices

Binary tree arrangement of node indices

Graph pooling

0
1 6

4 5
2

3
7

0,1
6,7

2,3 4,5

0
3

2 1

0,1
2,3

4,5
6,7 0

1 0 1 2 3 4 5 6 7

2 3 0 1

0 1

G0 = G G1 G2 Coarsening structure

(binary tree)

Produce a sequence of coarsened graphs

Max or average pooling of collapsed vertices

Binary tree arrangement of node indices

Graph pooling

0
1 6

4 5
2

3
7

0,1
6,7

2,3 4,5

0
3

2 1

0,1
2,3

4,5
6,7 0

1 0 1 2 3 4 5 6 7

2 3 0 1

0 1

G0 = G G1 G2 Coarsening structure

(binary tree)

Produce a sequence of coarsened graphs

Max or average pooling of collapsed vertices

Binary tree arrangement of node indices

Limitations of spectral graph CNNs

Poor generalization across domains with different shapes unless kernels
are localized

(can be remedied to some extent with spectral transformer
networks1)

Spectral kernels are isotropic due to rotation invariance of the Laplacian

1Yi, Su, Guo, Guibas 2017

Limitations of spectral graph CNNs

Poor generalization across domains with different shapes unless kernels
are localized (can be remedied to some extent with spectral transformer
networks1)

Spectral kernels are isotropic due to rotation invariance of the Laplacian

1Yi, Su, Guo, Guibas 2017

Limitations of spectral graph CNNs

Poor generalization across domains with different shapes unless kernels
are localized (can be remedied to some extent with spectral transformer
networks1)

Spectral kernels are isotropic due to rotation invariance of the Laplacian

1Yi, Su, Guo, Guibas 2017

Only rotationally-symmetric kernels!

Example of Chebyshev filters (order r = 7) on Euclidean grid

Anisotropic kernels on manifolds

Scale t Orientation θ Elongation α

Examples of anisotropic heat kernels on a manifold

Boscaini, Masci, Rodolà, Bronstein, Cremers 2016

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton4'){ocgs[i].state=false;}}

Limitations of spectral graph CNNs

Poor generalization across domains with different shapes unless kernels
are localized (can be remedied to some extent with spectral transformer
networks1)

Spectral kernels are isotropic due to rotation invariance of the Laplacian
(on manifolds, anisotropic Laplacians can be constructed2)

Only undirected graphs, as symmetry of the Laplacian matrix is assumed

1Yi, Su, Guo, Guibas 2017; 2Boscaini, Masci, Rodolà, Bronstein, Cremers 2016

Limitations of spectral graph CNNs

Poor generalization across domains with different shapes unless kernels
are localized (can be remedied to some extent with spectral transformer
networks1)

Spectral kernels are isotropic due to rotation invariance of the Laplacian
(on manifolds, anisotropic Laplacians can be constructed2)

Only undirected graphs, as symmetry of the Laplacian matrix is assumed

1Yi, Su, Guo, Guibas 2017; 2Boscaini, Masci, Rodolà, Bronstein, Cremers 2016

Different formulations of non-Euclidean CNNs

Spectral domain Spatial domain

Geometric Deep Learning Tutorial: NIPS 2017
https://vimeo.com/248497329

Different formulations of non-Euclidean CNNs

Spectral domain Spatial domain

Geometric Deep Learning Tutorial: NIPS 2017
https://vimeo.com/248497329

Summary

The convolution theorem allows us to generalize convolution operators
from grids to graphs

Naive spectral graph CNNs are unstable to deformation

Forcing the filter spectrum to be smooth stabilizes and localizes filters

Pooling operation can be replaced with graph pooling

Summary

The convolution theorem allows us to generalize convolution operators
from grids to graphs

Naive spectral graph CNNs are unstable to deformation

Forcing the filter spectrum to be smooth stabilizes and localizes filters

Pooling operation can be replaced with graph pooling

Summary

The convolution theorem allows us to generalize convolution operators
from grids to graphs

Naive spectral graph CNNs are unstable to deformation

Forcing the filter spectrum to be smooth stabilizes and localizes filters

Pooling operation can be replaced with graph pooling

Summary

The convolution theorem allows us to generalize convolution operators
from grids to graphs

Naive spectral graph CNNs are unstable to deformation

Forcing the filter spectrum to be smooth stabilizes and localizes filters

Pooling operation can be replaced with graph pooling

Part IIIc

Inference in Spectral Learning
with Deep Networks

Manifold learning (again)

Basic pattern:

Construct Gram matrix from kernel k(x,x′)

M =


k(x1,x1) k(x1,x2) . . . k(x1,xn)
k(x2,x1) k(x2,x2) . . . k(x2,xn)

...
...

. . .
...

k(xn,x1) k(xn,x2) . . . k(xn,xn)



Use top/bottom eigenvectors of Gram matrix as embedding

Use Nyström approximation for inference on held-out data:
φk(x′) ∝

∑
i φkik(xi,x

′)

Why not just learn parameterized φk(x) directly?

Manifold learning (again)

Basic pattern:

Construct Gram matrix from kernel k(x,x′)

M =


k(x1,x1) k(x1,x2) . . . k(x1,xn)
k(x2,x1) k(x2,x2) . . . k(x2,xn)

...
...

. . .
...

k(xn,x1) k(xn,x2) . . . k(xn,xn)



Use top/bottom eigenvectors of Gram matrix as embedding

Use Nyström approximation for inference on held-out data:
φk(x′) ∝

∑
i φkik(xi,x

′)

Why not just learn parameterized φk(x) directly?

Deep learn all the things

A successful strategy: take a branch of machine learning and fit the
model using a deep network

Variational Bayes: Variational autoencoders

Reinforcement Learning: Deep RL (DQN, A3C, PPO, TRPO, DDPG...)

Spectral Learning:

Deep learn all the things

A successful strategy: take a branch of machine learning and fit the
model using a deep network

Variational Bayes: Variational autoencoders

Reinforcement Learning: Deep RL (DQN, A3C, PPO, TRPO, DDPG...)

Spectral Learning:

Deep learn all the things

A successful strategy: take a branch of machine learning and fit the
model using a deep network

Variational Bayes: Variational autoencoders

Reinforcement Learning: Deep RL (DQN, A3C, PPO, TRPO, DDPG...)

Spectral Learning:

Deep learn all the things

A successful strategy: take a branch of machine learning and fit the
model using a deep network

Variational Bayes: Variational autoencoders

Reinforcement Learning: Deep RL (DQN, A3C, PPO, TRPO, DDPG...)

Spectral Learning: ????

Deep learn all the things

A successful strategy: take a branch of machine learning and fit the
model using a deep network

Variational Bayes: Variational autoencoders

Reinforcement Learning: Deep RL (DQN, A3C, PPO, TRPO, DDPG...)

Spectral Learning: Spectral Inference Networks

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018

Trade-offs of manifold learning

Exactly solvable by eigendecomposition

Data efficient (works with O(1000) data points)

Unsupervised learning without a generative model

Learning scales as O(nlogn) with size of training data

Inference scales as O(n) with size of training data

Performance degrades for noisy or clustered data

Collapsed embeddings can be fixed by choice of eigenvector

Can discover topology of data without prior assumptions

Trade-offs of manifold learning

Exactly solvable by eigendecomposition

Data efficient (works with O(1000) data points)

Unsupervised learning without a generative model

Learning scales as O(nlogn) with size of training data

Inference scales as O(n) with size of training data

Performance degrades for noisy or clustered data

Collapsed embeddings can be fixed by choice of eigenvector

Can discover topology of data without prior assumptions

Spectral inference networks trade the first two for the second two

Eigendecomposition as optimization

Rayleigh quotient has top eigenvector as argmax:

max
φ

φTAφ

φTφ

Generalize to multiple eigenvectors (up to rotation):

max
Φ

Tr
(

(ΦTΦ)−1ΦTAΦ
)

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018

Eigendecomposition as optimization

Rayleigh quotient has top eigenvector as argmax:

max
φ

φTAφ

φTφ

Generalize to multiple eigenvectors (up to rotation):

max
Φ

Tr
(

(ΦTΦ)−1ΦTAΦ
)

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018

Eigendecomposition as optimization

Rayleigh quotient has top eigenvector as argmax:

max
φ

φTAφ

φTφ

Generalize to multiple eigenvectors (up to rotation):

max
Φ

Tr
(

(ΦTΦ)−1ΦTAΦ
)

max
Φ

Tr

(∑
i

φTi φi

)−1∑
ij

Aijφ
T
i φj



Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018

Eigendecomposition as optimization

Rayleigh quotient has top eigenvector as argmax:

max
φ

φTAφ

φTφ

Generalize to multiple eigenvectors (up to rotation):

max
Φ

Tr
(

(ΦTΦ)−1ΦTAΦ
)

max
φ

Tr
(
Ex

[
φ(x)φ(x)T

]−1 Ex,x′
[
k(x,x′)φ(x)φ(x′)T

])
Replace Aij with k(x,x′) and sums with expectations

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018

Eigendecomposition as optimization

Most machine learning:
max
θ

Ex[fθ(x)]

Empirical gradient in unbiased

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018

Eigendecomposition as optimization

Most machine learning:
max
θ

Ex[fθ(x)]

Empirical gradient in unbiased

Spectral inference networks:

max
θ

Tr
(
Ex

[
φθ(x)φθ(x)T

]−1 Ex,x′
[
k(x,x′)φθ(x)φθ(x

′)T
])

Empirical gradient is biased

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018

Eigendecomposition as optimization

Most machine learning:
max
θ

Ex[fθ(x)]

Empirical gradient in unbiased

Spectral inference networks:

max
θ

Tr
(
Ex

[
φθ(x)φθ(x)T

]−1 Ex,x′
[
k(x,x′)φθ(x)φθ(x

′)T
])

Empirical gradient is biased

Solution: use moving average of gradient of φθφ
T
θ term

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018

Spectral inference network gradients

Objective is of the form Tr(Σ−1Π)

Gradient is of the form Tr
(
Σ−1∇θΠ

)
− Tr

(
Σ−1ΠΣ−1∇θΣ

)
To break symmetry between eigenfunctions, use gradient

Tr
(
L−Tdiag(L)−1∇θΠ

)
− Tr

(
L−T triu

(
Λdiag(L)−1

)
∇θΣ

)
where L is Cholesky decomposition of Π and Λ = L−1ΠL−T

To reduce bias in the gradient, use moving average for Σ and ∇θΣ

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018

Spectral inference network gradients

Objective is of the form Tr(Σ−1Π)

Gradient is of the form Tr
(
Σ−1∇θΠ

)
− Tr

(
Σ−1ΠΣ−1∇θΣ

)

To break symmetry between eigenfunctions, use gradient

Tr
(
L−Tdiag(L)−1∇θΠ

)
− Tr

(
L−T triu

(
Λdiag(L)−1

)
∇θΣ

)
where L is Cholesky decomposition of Π and Λ = L−1ΠL−T

To reduce bias in the gradient, use moving average for Σ and ∇θΣ

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018

Spectral inference network gradients

Objective is of the form Tr(Σ−1Π)

Gradient is of the form Tr
(
Σ−1∇θΠ

)
− Tr

(
Σ−1ΠΣ−1∇θΣ

)
To break symmetry between eigenfunctions, use gradient

Tr
(
L−Tdiag(L)−1∇θΠ

)
− Tr

(
L−T triu

(
Λdiag(L)−1

)
∇θΣ

)
where L is Cholesky decomposition of Π and Λ = L−1ΠL−T

To reduce bias in the gradient, use moving average for Σ and ∇θΣ

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018

Spectral inference network gradients

Objective is of the form Tr(Σ−1Π)

Gradient is of the form Tr
(
Σ−1∇θΠ

)
− Tr

(
Σ−1ΠΣ−1∇θΣ

)
To break symmetry between eigenfunctions, use gradient

Tr
(
L−Tdiag(L)−1∇θΠ

)
− Tr

(
L−T triu

(
Λdiag(L)−1

)
∇θΣ

)
where L is Cholesky decomposition of Π and Λ = L−1ΠL−T

To reduce bias in the gradient, use moving average for Σ and ∇θΣ

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018

Spectral inference networks

Sanity check: the Schrödinger equation

Eψ(x) = − ~
2m
∇2ψ(x)− ψ(x)

|x|

Without bias correction:

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018

Spectral inference networks

Sanity check: the Schrödinger equation

Eψ(x) = − ~
2m
∇2ψ(x)− ψ(x)

|x|

With bias correction:

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018

Approximating Laplacian eigenmaps

Objective:

k(x,x′)φ(x)φ(x)T = (φ(x)− φ(x′))(φ(x)− φ(x′))T

Approximating Laplacian eigenmaps

Objective:

k(x,x′)φ(x)φ(x)T = (φ(x)− φ(x′))(φ(x)− φ(x′))T

If x, x′ are sequential video frames, equivalent to Slow Feature Analysis

Wiskott and Sejnowski 2002; Sprekeler 2011

Approximating Laplacian eigenmaps

Objective:

k(x,x′)φ(x)φ(x)T = (φ(x)− φ(x′))(φ(x)− φ(x′))T

If x, x′ are sequential video frames, equivalent to Slow Feature Analysis

SFA learned layer-by-layer rather than end-to-end

Wiskott and Sejnowski 2002; Sprekeler 2011

Approximating Laplacian eigenmaps

Objective:

k(x,x′)φ(x)φ(x)T = (φ(x)− φ(x′))(φ(x)− φ(x′))T

If x, x′ are sequential video frames, equivalent to Slow Feature Analysis

SFA learned layer-by-layer rather than end-to-end

SFA learned feature-by-feature rather than fully online

Wiskott and Sejnowski 2002; Sprekeler 2011

Spectral inference networks on Atari

More interpretable features compared to other approaches when trained
on random policies on Atari games

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018

Summary

Eigenfunctions can be learned by stochastic gradient descent with func-
tion approximation

Slow feature analysis is a special case of Spectral Inference Networks

While less efficient than standard spectral algorithms, it is far more
scalable

Summary

Eigenfunctions can be learned by stochastic gradient descent with func-
tion approximation

Slow feature analysis is a special case of Spectral Inference Networks

While less efficient than standard spectral algorithms, it is far more
scalable

Summary

Eigenfunctions can be learned by stochastic gradient descent with func-
tion approximation

Slow feature analysis is a special case of Spectral Inference Networks

While less efficient than standard spectral algorithms, it is far more
scalable

Future challenges in manifold and spectral learning

Can we encode more structural assumptions into the choice of kernel?

Can we combine the speed and efficiency of nonparametric methods
with the scalability of parametric methods?

Can we use curvature in observation space as a learning signal rather
than a post-hoc analysis tool?

Can we use the learned representations for challenging downstream
tasks?

Can we better connect spectral learning with probabilistic models?

Future challenges in manifold and spectral learning

Can we encode more structural assumptions into the choice of kernel?

Can we combine the speed and efficiency of nonparametric methods
with the scalability of parametric methods?

Can we use curvature in observation space as a learning signal rather
than a post-hoc analysis tool?

Can we use the learned representations for challenging downstream
tasks?

Can we better connect spectral learning with probabilistic models?

Future challenges in manifold and spectral learning

Can we encode more structural assumptions into the choice of kernel?

Can we combine the speed and efficiency of nonparametric methods
with the scalability of parametric methods?

Can we use curvature in observation space as a learning signal rather
than a post-hoc analysis tool?

Can we use the learned representations for challenging downstream
tasks?

Can we better connect spectral learning with probabilistic models?

Future challenges in manifold and spectral learning

Can we encode more structural assumptions into the choice of kernel?

Can we combine the speed and efficiency of nonparametric methods
with the scalability of parametric methods?

Can we use curvature in observation space as a learning signal rather
than a post-hoc analysis tool?

Can we use the learned representations for challenging downstream
tasks?

Can we better connect spectral learning with probabilistic models?

Future challenges in manifold and spectral learning

Can we encode more structural assumptions into the choice of kernel?

Can we combine the speed and efficiency of nonparametric methods
with the scalability of parametric methods?

Can we use curvature in observation space as a learning signal rather
than a post-hoc analysis tool?

Can we use the learned representations for challenging downstream
tasks?

Can we better connect spectral learning with probabilistic models?

Acknowledgements

Michael Bronstein, Xavier Bresson, Joan Bruna, Arthur Szlam, David Barrett,
Kim Stachenfeld, Stig Petersen, Ashish Agarwal, Chris Burgess

Get in touch: pfau@google.com, @pfau on Twitter

Bibliography

M. P. Do Carmo, “Differential Geometry of Curves and Manifolds”, Classic
textbook on differential geometry

R. Kimmel and J. A Sethian, “Computing Geodesic Paths on Manifolds”,
PNAS 95(15): 8431-8435, 1998.

S. Roweis and L. K. Saul, “Nonlinear Dimensionality Reduction by Locally
Linear Embedding”, Science 290(5500): 2323-2326, 2000.

J. B. Tenenbaum, V. De Silva, J. C. Langford, “A Global Geometric Framework
for Nonlinear Dimensionality Reduction”, Science 290(5500): 2319-2323, 2000.

M. Belkin and P. Niyogi, “Laplacian Eigenmaps for Dimensionality Reduction
and Data Representation”, Neural Computation 15(6): 1373-1396, 2002.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado and J. Dean, “Distributed
Representation of Words and Phrases and Their Compositionality”, Adv. NIPS:
3111-3119, 2013. Deep learning of high-dimensional word embeddings with
skip-grams

Bibliography

A. Y. Ng, M. I. Jordan, Y. Weiss, “On Spectral Clustering: Analysis and An
Algorithm”, Adv. NIPS: 849-856, 2002.

J. Shi and J. Malik, “Normalized Cuts and Image Segmentation”, IEEE TPAMI
22(8): 888-905, 2000.

C. Ionescu, O. Vantzos, C. Sminchisescu, “Matrix Backpropagation for Deep
Networks with Structured Data”, Proc. ICCV: 2965-2973, 2015. Use
normalized cuts as layer inside deep network

Y. Bengio, J.-F. Paiement, P. Vincent, O. Delalleau, N. Le Roux, M. Ouimet,
“Out-of-Sample Extensions for LLE, IsoMap, MDS, Eigenmaps and Spectral
Clustering”, Adv. NIPS: 177-184, 2004.

L. van der Maaten and G. Hinton, “Visualizing Data using t-SNE”, JMLR
9(11): 2579-2605, 2008.

R. Hadsell, S. Chopra and Y. LeCun, “Dimensionality Reduction by Learning an
Invariant Mapping”, CVPR: 1735-1742, 2006.

Bibliography

D. Pfau and C. P. Burgess, “Minimally Redundant Laplacian Eigenmaps”,
ICLR Workshops, 2018.

M. Nickel and D. Kiela, “Poincaré Embeddings for Learning Hierarchical
Representations”, Adv. NIPS: 6341-6350, 2017.

M. Nickel and D. Kiela, “Learning Continuous Hierarchies in the Lorentz Model
of Hyperbolic Geometry”, ICML 2018.

S. Bonnabel, “Stochastic Gradient Descent on Riemannian Manifolds”, IEEE
Trans. Automatic Control 58(9): 2217-2229, 2013.

C. Gulcehre, M. Denil, M. Malinowski, A. Razavi, R. Pascanu, K. M. Hermann,
P. Battaglia, V. Bapst, D. Raposo, A. Santoro, N. de Freitas, “Hyperbolic
Attention Networks”, arXiv:1805.09786, 2018.

I. Higgins, L. Matthey, A. Pal, C. P. Burgess, X. Glorot, M. Botvinick, S.
Mohamed, A. Lerchner, “β-VAE: Learning Basic Visual Concepts with a
Constrained Variational Framework”, Proc. ICLR, 2017.

Bibliography

G. Arvanitidis, L. K. Hansen, S. Hauberg, “Latent Space Oddity: on the
Curvature of Deep Generative Models”, ICLR 2018.

B. Boots, S. M. Siddiqi, G. J. Gordon, “Closing the Learning-Planning Loop
with Predictive State Representations”, IJRR 30(7): 954-966, 2011. Use
spectral learning for planning and control

M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, P. Vandergheynst, “Geometric
deep learning: going beyond Euclidean data”, arXiv:1611.08097, 2016. First
review paper of geometric deep learning

J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, “Spectral networks and locally
connected networks on graphs”, Proc. ICML 2014. First Spectral CNN on
graphs

M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks on
graph-structured data”, arXiv:1506.05163, 2015. Spectral CNN with smooth
multipliers

Bibliography

M. Defferrard, X. Bresson, P. Vandergheynst, “Convolutional neural networks
on graphs with fast localized spectral filtering”, Proc. NIPS 2016. Spectral
CNN with Chebychev polynomial filters (ChebNet)

T. N. Kipf, M. Welling, “Semi-supervised classification with graph
convolutional networks”, arXiv:1609.02907, 2016. Graph convolutional
network (GCN) framework, a simplification of ChebNet

F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda, M. M. Bronstein,
“Geometric deep learning on graphs and manifolds using mixture model
CNNs”, Proc. CVPR 2017. Mixture Model network (MoNet) framework

D. Boscaini, J. Masci, E. Rodolà, M. M. Bronstein, D. Cremers, “Anisotropic
diffusion descriptors”, Computer Graphics Forum 35(2):431–441, 2016.
Anisotropic heat kernels

L. Yi, H. Su, X. Guo, L. Guibas, “SyncSpecCNN: Synchronized Spectral CNN
for 3D Shape Segmentation”, Proc. CVPR 2017. Spectral transformer
networks

Bibliography

Y. LeCun, B. Boser, J. S. Denker, R. E. Howard, W. Hubbard, L. D. Jackel,
“Backpropagation applied to handwritten ZIP code recognition”, Neural
Computation 1(4):541–551, 1989. Classical Euclidean CNN

D. Pfau, S. Petersen, A. Agarwal, D. Barrett and K. Stachenfeld, “Spectral
Inference Networks: Unifying Spectral Methods with Deep Learning”, arXiv:
1806.02215, 2018.

L. Wiskott and T. J. Sejnowski, “Slow Feature Analysis: Unsupervised Learning
of Invariances”, Neural Computation 14(4): 715-770, 2002.

H. Sprekeler, “On the Relation of Slow Feature Analysis and Laplacian
Eigenmaps”, Neural Computation 23(12): 3287-3302, 2011. Shows
equivalence of SFA and Laplacian eigenmaps

	fd@rm@0:
	fd@rm@1:
	fd@rm@2:
	fd@rm@3:
	fd@rm@4:

