Manifold Learning and Spectral Methods

David Pfau
Q) DeepMind

Buenos Aires MLSS, 28 June 2018

What this tutorial is about

Designing models for graph- or manifold-structured input

What this tutorial is about

s
i \
. M > hrchacplastida
N

Designing models for data with latent graph- or manifold-structure

What this tutorial is about

Discovering latent manifold structure in data

What this tutorial is not about

F(0) = E, [Velogp(m|9)V010gp($|9>T]

Orp1 < 0 + f‘lvelogp(wtlﬂ)

Information geometry - the manifold structure of parameter space

Spectral Learning

Any learning algorithm where the usual tools (SGD, EM, MCMC...) are
replaced with eigendecomposition or SVD

Spectral Learning

Any learning algorithm where the usual tools (SGD, EM, MCMC...) are
replaced with eigendecomposition or SVD

Solves a nonconvex optimization exactly!
A =3AD"

min Tr(®TAD)
eTp=I

Spectral Learning

Any learning algorithm where the usual tools (SGD, EM, MCMC...) are
replaced with eigendecomposition or SVD

Solves a nonconvex optimization exactly!
A =3AD"
min Tr(®TAD)

dTo=I

Functions on R™ can be decomposed with Fourier basis. Spectral
analysis generalizes Fourier analysis to manifolds and graphs

What is this good for?

B Bottom loop articulation

Top arch articulation

<
¢

Tenenbaum, De Silva and Langford 2000

What is this good for?

A.

Outer Walls

&2

Simulated Ebvironment

Simulated Environment 3-d View (to scale)

-8 -4 0 4 8 .3 Learned Representation

x10

Learned Subspace Mapped to

Geometric Space

Boots, Siddiqi and Gordon 2011

Outline

Theory
Graphs
Manifolds and Differential Geometry

Spectral Theory

Outline

Theory
Graphs
Manifolds and Differential Geometry
Spectral Theory
The Geometry of Data
Classic Manifold Learning
Embedding Hierarchies in Hyperbolic Space

Analyzing the Geometry of Deep Generative Models

Outline

Theory
Graphs
Manifolds and Differential Geometry
Spectral Theory
The Geometry of Data
Classic Manifold Learning
Embedding Hierarchies in Hyperbolic Space
Analyzing the Geometry of Deep Generative Models
Spectral Deep Learning
Convolutions on Graphs and Manifolds
Spectral Graph Convolutional Neural Networks

Inference in Spectral Learning with Deep Networks

Part |

Theory

Part la

Graph Theory (in three slides)

Graphs

Weighted undirected graph G with vertices
V={1,...,n}, edges £ CV x V and edge
weights w;; > 0 for (¢,7) € £

Graphs

Weighted undirected graph G with vertices
V=A{1,...,n}, edges E CV x V and edge
weights w;; > 0 for (i,j) € £

Functions over the vertices

L2V) = {f:V >R}

fi

Graphs

Weighted undirected graph G with vertices
V=A{1,...,n}, edges E CV x V and edge
weights w;; > 0 for (i,j) € £

Functions over the vertices
L2(V) ={f:V — R} represented as
vectors f = (f1,..., fn)

fi

Graphs

Weighted undirected graph G with vertices
V=A{1,...,n}, edges E CV x V and edge
weights w;; > 0 for (i,j) € £

Functions over the vertices
L2(V) ={f:V — R} represented as
vectors f = (f1,..., fn)

Inner product

<fa Zfzgz—fT

%

fi

Shortest paths on graphs

Dijkstra’s Algorithm: Find sequence
19, --.,1k € V from source ig to sink iy that
minimizes >, wi,i, .,

Shortest paths on graphs

Dijkstra’s Algorithm: Find sequence

19, --.,1k € V from source ig to sink iy that
minimizes >, wi,i, .,

Create queue of active nodes and
shortest-path tree, starting from source

Shortest paths on graphs

Dijkstra’s Algorithm: Find sequence

19, --.,1k € V from source ig to sink iy that
minimizes >, wi,i, .,

Create queue of active nodes and
shortest-path tree, starting from source

Remove active node 7 closest to source,
compute distance to neighbors
diSt[j] = diSt[Z'] + Wij -

Shortest paths on graphs

Dijkstra's Algorithm: Find sequence

19, --.,1k € V from source ig to sink iy that
minimizes >, wi,i, .,

Create queue of active nodes and

shortest-path tree, starting from source

Remove active node 7 closest to source,
compute distance to neighbors
diSt[j] = distm + Wij -

If dist[j] is less than before, set i as parent
node of j in shortest path tree.

Shortest paths on graphs

Dijkstra's Algorithm: Find sequence

19, --.,1k € V from source ig to sink iy that
minimizes >, wi,i, .,

Create queue of active nodes and
shortest-path tree, starting from source

Remove active node 7 closest to source,
compute distance to neighbors
diSt[j] = distm + Wij -

If dist[j] is less than before, set i as parent
node of j in shortest path tree.

Stop when sink is reached. Path to the root
of the tree is the shortest path.

Shortest paths on graphs

Dijkstra's Algorithm: Find sequence
19, --.,1k € V from source ig to sink iy that
minimizes >, wi,i, .,

Create queue of active nodes and
shortest-path tree, starting from source

Remove active node 7 closest to source,
compute distance to neighbors
diSt[j] = distm + Wij -

If dist[j] is less than before, set i as parent
node of j in shortest path tree.

Stop when sink is reached. Path to the root
of the tree is the shortest path.

Complexity: O(€] + |V|log|V|)

Graph Laplacian

Unnormalized Laplacian A : L2(V) — L2(V)
AN = > wiylfi— 1))

J:(i,5)€€

fj

Graph Laplacian

Unnormalized Laplacian A : L2(V) — L2(V)
AN = > wiy(fi— 1)

j:(i,5)€€
= i Y wiy— Y wyf
7:(4,5)€E 7:(4,5)€E

(up to scale) difference between f and its
local average

fj

Graph Laplacian

Unnormalized Laplacian A : L2(V) — L2(V)
A = Y wiylfi— 1)
ji(i,5)€€

(up to scale) difference between f and its

local average

Represented as a positive semi-definite n x n
matrix A = D — W where W = (w;;) and
D = diag(_,; wij)

fj

Graph Laplacian

f.
Unnormalized Laplacian A : L2(V) — L2(V) y

A = Y wiylfi— 1)]
ji(i,5)€€
(up to scale) difference between f and its

local average

Represented as a positive semi-definite n x n
matrix A = D — W where W = (w;;) and
D = diag(_,; wij)

Dirichlet energy of f
1 n
||f\|(2; =5 Z wij(fi — f;)? = fTAf
ij=1

measures the smoothness of f (how fast it changes locally)

Part Ib

Manifolds and Differential Geometry

Riemannian manifolds

Manifold X = locally flat space (no
non-differentiable corners)

Tangent plane T, X = local Euclidean
representation of manifold X around x

Riemannian manifolds

Manifold X = locally flat space (no
non-differentiable corners)

Tangent plane T, X = local Euclidean
representation of manifold X around z

Riemannian metric describes the local
intrinsic structure at x

<', '>TIX : TZX X TZX — R

Riemannian manifolds

Manifold X = locally flat space (no
non-differentiable corners)

Tangent plane T, X = local Euclidean
representation of manifold X around z

Riemannian metric describes the local
intrinsic structure at x

<', '>TIX : TZX X TZX — R

Scalar fields f : X — R and vector
fields F': X - TX

Riemannian manifolds

Manifold X = locally flat space (no
non-differentiable corners)

Tangent plane T, X = local Euclidean
representation of manifold X around x

Riemannian metric describes the local
intrinsic structure at x

<', '>TIX : TZX X TmX — R

Scalar fields f : X — R and vector
fields F': X - TX

Inner products
Faheeo = [Fag(e)ds

(F,G)r2(1x) Z/X(F(x),G(x»medx

Shortest paths on manifolds

Curve 7(+) : [0,1] = X = smooth path
along manifold

Shortest paths on manifolds

Curve 7(+) : [0,1] = X = smooth path
along manifold

Velocity 4(-) : [0,1] = T, X = local
direction of change along the curve

Shortest paths on manifolds

Curve 7(+) : [0,1] = X = smooth path
along manifold

Velocity 4(-) : [0,1] = T, X = local
direction of change along the curve

Curve energy integrates length at constant
velocity

st = [(afolo

>Tv(t)X

Shortest paths on manifolds

Curve 7(+) : [0,1] = X = smooth path
along manifold

Velocity 4(-) : [0,1] = T, X = local
direction of change along the curve

Curve energy integrates length at constant
velocity

st = [(afolo

>Tv(t)X

Geodesic shortest curve between points

7= min S[]
7(0)==z0o
Y()=z1

Shortest paths on manifolds

Curve 7(+) : [0,1] = X = smooth path
along manifold

Velocity 4(-) : [0,1] = T, X = local
direction of change along the curve

Curve energy integrates length at constant
velocity

st = [(afolo

>Tv(t)X

Geodesic shortest curve between points

Geodesic is a path such that the velocities are locally parallel

Parallel Transport

Connection T';,(F, G): infinitesimal
change to vector F' € T, X that keeps
it locally parallel when moved in the
direction G € T, X.

Parallel Transport

Connection T';,(F, G): infinitesimal
change to vector F' € T, X' that keeps
it locally parallel when moved in the
direction G € T, X.

Parallel transport Sequence of vectors
F(t) € Ty4)X along curve v that are
all locally parallel.

Parallel Transport

Connection T';,(F, G): infinitesimal
change to vector F' € T, X' that keeps
it locally parallel when moved in the
direction G € T, X.

Parallel transport Sequence of vectors
F(t) € Ty4)X along curve v that are
all locally parallel.

(1) + Ty (F(8),5(8) = 0

Geodesic equation

Parallel transport:

F(t) + Ty (F (), 7(t) = 0

Geodesic equation

Parallel transport:

F(t) + Ty (F (), 7(t) = 0

The geodesic equation:

W(t) + F’y(t) (V(t)77(t)) =0

Geodesic equation

Parallel transport: \/, \ .

. / \
B(#) + Ty (F(1),4(5) = 0 N \
The geodesic equation: \i

5(8) + Ty (3(1), 4(8)) = 0 N

A geodesic is a curve such that if you parallel transport its velocity at a
point along itself, the vector always remains tangent to the curve

Geodesic equation

Parallel transport:
F<t) + F’y(t) (F(t)a ’V(t)) =0
The geodesic equation:

W(t) + F'y(t) (’Y(t)77(t)) =0

A geodesic is a curve such that if you parallel transport its velocity at a
point along itself, the vector always remains tangent to the curve

Solve numerically on meshes with fast marching method

Kimmel and Sethian 1998

Manifold Laplacian

Laplacian A : L2(X) — L?(X)
Af(z) = —divVf(z)

where gradient V: L2(X)— L?(TX)
and divergence div: L?(TX)— L?(X)
are adjoint operators

<F, Vf>L2(TX) = <—CliVF7 f>L2(X)

Manifold Laplacian

Laplacian A : L2(X) — L?(X)
Af(z) = —divVf(z)

where gradient V: L2(X)— L?(TX)
and divergence div: L?(TX) — L?(X)
are adjoint operators

<F, Vf>L2(TX) = <—diVF7 f>L2(X)

Laplacian is self-adjoint
(Af, rzxy = (f, Af) L2y

Manifold Laplacian

Laplacian A : L2(X) — L?(X)
Af(z) = —divVf(z)

where gradient V: L2(X)— L?(TX)
and divergence div: L?(TX) — L?(X)
are adjoint operators

(F, Vf>L2(TX) = <—diVF7 f>L2(X)

Laplacian is self-adjoint
(Af, rzxy = (f, Af) L2y

Continuous limit of graph Laplacian
under some conditions

Dirichlet energy of f
R CINETE

measures the smoothness of f (how fast it changes locally)

Part Ic

Spectral Theory for
Graphs and Manifolds

Orthogonal bases on graphs
Find the smoothest orthogonal basis {¢1,...,¢,} C L?(V)
min Epi(y1) st [lon] =1
n;in Epi(Yr) st okl =1, k=2,3,...n

¢ L span{¢i,...,dp_1}

Orthogonal bases on graphs
Find the smoothest orthogonal basis {¢1,...,¢,} C L?(V)

min trace(®' A®) st. @' =1
BeRmxn

Orthogonal bases on graphs
Find the smoothest orthogonal basis {¢1,...,¢,} C L?(V)
min trace(®' A®) st. @' =1

PR X"

Solution: @ = Laplacian eigenvectors

Laplacian eigenvectors and eigenvalues
Eigendecomposition of a graph Laplacian
A=3ADT

where ® = (¢, ..., ¢,) are orthogonal eigenvectors (® ' ® = I) and
A = diag()\q, ..., A,) the corresponding non-negative eigenvalues

Laplacian eigenvectors and eigenvalues

Eigendecomposition of a graph Laplacian

A=2AD"
where ® = (¢, ..., ¢,) are orthogonal eigenvectors (® ' ® = I) and
A = diag()\q, ..., A,) the corresponding non-negative eigenvalues
+1
ol
—1 |
—T 0 +m

First eigenfunctions of 1D Euclidean Laplacian

Laplacian eigenvectors and eigenvalues
Eigendecomposition of a graph Laplacian
A=3ADT

where ® = (¢, ..., ¢,) are orthogonal eigenvectors (® ' ® = I) and
A = diag()\q, ..., A,) the corresponding non-negative eigenvalues

First eigenfunctions of a graph Laplacian

Laplacian eigenvectors and eigenvalues
Eigendecomposition of a graph Laplacian
A =3ADT

where ® = (¢, ..., ¢,) are orthogonal eigenvectors (® ' ® = I) and
A = diag()\q, ..., A,) the corresponding non-negative eigenvalues

P2 o3

First eigenfunctions of a manifold Laplacian

Fourier analysis on Euclidean spaces

A function f : [-m, 7] — R can be written as a Fourier series

E —1k:ac dm/ezkw
o

k>0

Fourier analysis on Euclidean spaces

A function f : [-m, 7] — R can be written as a Fourier series

f($) = Z <f7 eikx>L2([—7r,ﬂ']) eikm

k>0

Il
+
hesll
+
>
+

Fourier analysis on Euclidean spaces

A function f : [—m, 7] — R can be written as a Fourier series

f(x) = Z <f7 eikx>L2([—7r,ﬂ']) eikm
—_—

k>0
fr Fourier coefficient

Fourier analysis on Euclidean spaces

A function f : [—m, 7] — R can be written as a Fourier series

f(ﬂi') = Z <f7 eikz>L2([—7r,ﬂ']) eikm
—_—

k>0
fr Fourier coefficient

B N +f2\//\ +f3AvAv+...

. 2) y
Fourier basis = Laplacian eigenfunctions: —-L;eih® = j2¢ike

Fourier analysis on graphs and manifolds

A function f: ¥V — R can be written as Fourier series

F=Y (£ o120 on

Fourier basis = Laplacian eigenfunctions: A¢y = Ax P

Fourier analysis on graphs and manifolds

A function f :V — R can be written as Fourier series

f= Z<f»¢k>L2(V) o

Fourier basis = Laplacian eigenfunctions: A¢y = Ax P

A, = frequency

e o2

First Fourier basis elements of a mamfold.

Summary

Manifolds and graphs are natural extensions of vector spaces

Summary

Manifolds and graphs are natural extensions of vector spaces

Lines can be generalized to shortest paths and geodesics

Summary

Manifolds and graphs are natural extensions of vector spaces
Lines can be generalized to shortest paths and geodesics

The Laplacian operator defines smoothness of a function

Summary

Manifolds and graphs are natural extensions of vector spaces
Lines can be generalized to shortest paths and geodesics
The Laplacian operator defines smoothness of a function

Spectral decompositions generalize Fourier analysis

Part Il

The Geometry of Data

Part lla

Classic Manifold Learning:
A Time Before Deep Learning

Manifold Learning

Learn nonlinear embedding of data
into low dimensional space that
preserves distances locally

e

Roweis and Saul 2000

Manifold Learning

Learn nonlinear embedding of data
into low dimensional space that
preserves distances locally

The data itself does not have to be
manifold structured

Roweis and Saul 2000

Manifold Learning

Roweis and Saul 2000

Learn nonlinear embedding of data
into low dimensional space that
preserves distances locally

The data itself does not have to be
manifold structured

The dataset has some latent
manifold structure

IsoMap

Compute nearest neighbors graph of
dataset

Tenenbaum, de Silva and Langford 2000

IsoMap

Compute nearest neighbors graph of
dataset ,

Construct matrix D € R™*" of geodesic 1
distances between pairs of data by .
Dijkstra’s algorithm .

Tenenbaum, de Silva and Langford 2000

IsoMap

Compute nearest neighbors graph of
dataset

Construct matrix D € R™*" of geodesic
distances between pairs of data by
Dijkstra’s algorithm

Embed data in low dimensional space with
multidimensional scaling (MDS):

Tenenbaum, de Silva and Langford 2000

IsoMap

Compute nearest neighbors graph of
dataset

Construct matrix D € R™*" of geodesic
distances between pairs of data by
Dijkstra’s algorithm

Embed data in low dimensional space with
multidimensional scaling (MDS):

1 1 1
B=—-- (I - 11T) D (I - 11T)
2 n n

Tenenbaum, de Silva and Langford 2000

IsoMap

Compute nearest neighbors graph of
dataset

Construct matrix D € R™*" of geodesic
distances between pairs of data by
Dijkstra’s algorithm

Embed data in low dimensional space with
multidimensional scaling (MDS):

1 1 1
B=—-- (I - 11T) D (I - 11T)
2 n n

ALy Ay @1, -+, Ok top eigenvalues and
eigenvectors of B

Tenenbaum, de Silva and Langford 2000

IsoMap

Compute nearest neighbors graph of
dataset

Construct matrix D € R™*" of geodesic
distances between pairs of data by
Dijkstra’s algorithm

Embed data in low dimensional space with

multidimensional scaling (MDS):

1 1 1
B=—-- (I - 11T) D (I - 11T>
2 n n

ALy Ay @1, -+, Ok top eigenvalues and
eigenvectors of B

Embedding: (\/X(zh, RN \/E‘f?k)

Tenenbaum, de Silva and Langford 2000

IsoMap

Compute nearest neighbors graph of
dataset

Construct matrix D € R™*" of geodesic
distances between pairs of data by
Dijkstra’s algorithm

Embed data in low dimensional space with
multidimensional scaling (MDS):

B Bottom loop articulation

L

1 1 1 2 B a =28
B=—-(1--117)D(1--117 mB o
2\ " BmaBeHg
| gaBB2 A RaHEg
A, -eos Ay @1, ..., O) top eigenvalues and gl 5, m8

eigenvectors of B ﬂ

Embedding: (\/Alqbl, ey \/)\kgbk) %

Tenenbaum, de Silva and Langford 2000

IsoMap

Compute nearest neighbors graph of
dataset

Construct matrix D € R™*" of geodesic
distances between pairs of data by
Dijkstra’s algorithm

Embed data in low dimensional space with

multidimensional scaling (MDS):

B gEE B
I
B--1 (I—lllT)D(I—lnT) | - «E!_E‘ au
A,y Ak, @1, .., Pk top eigenvalues and S C VR El
eigenvectors of B Cr E L ﬂ; o :

Embedding: (\/A_lqh, RN \/A_k‘z)k)

Leftright pose

Tenenbaum, de Silva and Langford 2000

Laplacian eigenmaps

Compute weighted nearest neighbors
graph of dataset

Belkin and Niyogi 2002

0.028

0.0275

0.027

0.0265

0.026

0.0255

0.025

0.0245

0.024

-0.011

‘be “on
-.find

‘make
"oy .upon

look “under
“get F0.0115 _along
Aake
Jgive 3

see during

Lat
.do from
than o
.help.become 0012 AGAMB

’ toward

~know

~among
10.0125

-put

4 8 0.015 0.016 0.017 0.01

Laplacian eigenmaps

Compute weighted nearest neighbors
graph of dataset

Construct graph Laplacian matrix
A=D-W

Belkin and Niyogi 2002

0.028

0.0275

0.027

0.0265

0.026

0.0255

0.025

0.0245

0.024

“in

-0.011

“be “on
-.find

‘make
‘say .upon
look “under
~get F0.0115 _along
Aake
Jaive

~duri
o during
Lat
.do from
uglzia:sl"'
-help-become -0.012 S etween
toward
~know
~among
-0.0125

-put

4 6 8 0015 0.016 0.017 0.01

Laplacian eigenmaps

Compute weighted nearest neighbors
graph of dataset

Construct graph Laplacian matrix
A=D-W

Aly s Ay @1, .-+, Ox bottom eigenvalues
and eigenvectors of A

Belkin and Niyogi 2002

0.028

0.0275

0.027

0.0265

0.026

0.0255

0.025

0.0245

0.024

—oonp "

be won

. find

‘make
“say upon
look “under
~get F0.0115 . along
Aake
Jaive

~duri
see uring
Lat
.do from
aézﬁ.'h"'
help-become -0.012 ! stwoen
toward
~know
~among
+0.0125

. put

4 6 8 0015 0.016 0.017 0.01
x107

Laplacian eigenmaps

Compute weighted nearest neighbors
graph of dataset

Construct graph Laplacian matrix
A=D-W

Aly s Ay @1, .-+, Ox bottom eigenvalues
and eigenvectors of A

Embedding: (s, ..., ¢x)

Belkin and Niyogi 2002

0.028

0.0275

0.027

0.0265

0.026

0.0255

0.025

0.0245

0.024

—oonp "

be won

. find

‘make
“say upon
look “under
~get F0.0115 . along
Aake
Jaive

~duri
see uring
Lat
.do from
sézﬁ.';""
help-become -0.012 ! stwoen
toward
~know
~among
+0.0125

. put

4 6 8 0015 0.016 0.017 0.01
x107

Laplacian eigenmaps

Compute weighted nearest neighbors

graph of dataset o028 oon "
0.0275 *be *on
Construct graph Laplacian matrix e
‘say upon
A - D —_ W oo look -Jn::v
~get F0.0115 _along
0.0265 Aake
. Jgive during
Aly s Ay @1, .-+, Ox bottom eigenvalues oo durng
. Lat
and eigenvectors of A o fom
00255 than of
. .h?\pabecome -0.012 AgaINYY, etween
Embedding: (¢, ..., ¢x) ool doow fovers
Country and Capital Vectors Projected by PCA - among
2 Ghinas 8eling 0.0245
15 Russia
s Moscow 0024 -put oo
! Turkey< “Ankara *Tokyo 2 4 6 8 0.015 0.016 0.017 0.01
x10°
| Poland:-
of comm .
05| ey S Berin
P e
15 | poin s
722 1.5 1 05 J 05 1 15 2

Belkin and Niyogi 2002; Mikolov, Sutskever, Chen, Corrado and Dean 2013

Spectral clustering

Same embedding as Laplacian eigenmaps, but use embedding vectors for
clustering instead of visualization

Ng, Jordan and Weiss 2002

Normalized cuts

Minimum (normalized) cut problem:
partition vertices into sets A, B C V

NCut(y) _ ZZGA,]GB 3 + ZZGB,JGA]

EieA,jev Wij ZieB,jeV Wi

Shi and Malik 2000

Normalized cuts

Minimum (normalized) cut problem:
partition vertices into sets A, B C V

ZieA,jeB Wi " ZieB,jeA Wij

NCut(y) =
EieA,jev Wij ZieB,jeV Wi
y'(D - W)y

yly

Shi and Malik 2000

Normalized cuts

Minimum (normalized) cut problem:
partition vertices into sets A, B C V

NCut(y) _ ZZGA,]GB 3 + ZZGB,JGA]
EieA,jev Wij ZieB,jeV Wi
y! Ay

yly

Shi and Malik 2000

Normalized cuts

Minimum (normalized) cut problem:
partition vertices into sets A, B C V

NCut(y) _ ZZGA,]GB 3 + ZZGB,JGA]

EieA,jevwij EieB,jevwij
T

y' Ay

yly

Relax optimization from binary vectors to
continuous vectors. Solution is bottom
eigenfunctions of graph Laplacian.

Shi and Malik 2000

Normalized cuts

Minimum (normalized) cut problem: °
partition vertices into sets A, B C V A / B

ZieA,jeBwij " ZieB,jeAwij @
DicajevWii Diesjev Wij ./
y Ay o
vy

NCut(y) =

Relax optimization from binary vectors to
continuous vectors. Solution is bottom
eigenfunctions of graph Laplacian.

Used in image segmentation where each
vertex is a pixel

Shi and Malik 2000

Normalized cuts

Minimum (normalized) cut problem:
partition vertices into sets A, B C V

ZieA,jeB Wi n ZieB,jeA Wij

NCut(y) =
EieA,jevwij ZieB,jveij

y' Ay
yly

Relax optimization from binary vectors to
continuous vectors. Solution is bottom
eigenfunctions of graph Laplacian.

B

N

Shi and Malik 2000; lonescu, Vantzos and Sminchisescu 2015

Can be incorporated as layer inside a deep
network by backpropagating through
eigendecomposition

Inference on held-out data

A common pattern:

Inference on held-out data

A common pattern:

Construct Gram matrix from kernel k(x,x’)
k(x1,x1) k(x1,x%x2) ... k(x1,%xp)
N k(x2,x1) k(x2,%x2) ... k(x2,%x,)

kE(xn,x1) k(Xp,%x2) ... k(Xn,Xn)

Inference on held-out data

A common pattern:

Construct Gram matrix from kernel k(x,x’)

k(x1,x1) k(x1,x%x2) ... k(x1,%xp)
k(xo,x1) k(Xo,X2) ... k(X2,X,
| R) k)
kE(xn,x1) k(Xp,%x2) ... k(Xn,Xn)

Use top/bottom eigenvectors of Gram matrix as embedding

Inference on held-out data

A common pattern:

Construct Gram matrix from kernel k(x,x’)

k(x1,x1) k(x1,x%x2) ... k(x1,%xp)
k(xo,x1) k(Xo,X2) ... k(X2,X,
| R) k)
kE(xn,x1) k(Xp,%x2) ... k(Xn,Xn)

Use top/bottom eigenvectors of Gram matrix as embedding

Works for fixed dataset x1,...,x, -
but what is the embedding vector for a new data point x'?

Inference on held-out data

Assume data drawn x1,...,X, ~ p(x). Gram matrix is approximation
to linear operator:
f(x1)
1 f(x2) 1
EM . = n Zk(xiyxj)f(xj) ~ Ep(x) (k(x, %) f(x)]
- j
f(x’ﬂ) i
= K,lx)

Bengio, Paiement, Vincent et al 2004

Inference on held-out data

Assume data drawn x1,...,X, ~ p(x). Gram matrix is approximation
to linear operator:
f(x1)
1 f(x2) 1
EM . = n Zk(xiyxj)f(xj) ~ Ep(x) (k(x, %) f(x)]
- j
f(x’ﬂ) i
= K,lx)

Eigenvectors ¢y, of M are approximation to eigenfunctions ¢ (-) of
linear operator IC,,

Bengio, Paiement, Vincent et al 2004

Inference on held-out data

Assume data drawn x1,...,X, ~ p(x). Gram matrix is approximation
to linear operator:
f(x1)
1 f(x2) 1
EM . = n Zk(xiyxj)f(xj) ~ Ep(x) (k(x, %) f(x)]
) J
f(X’ﬂ) i
= Kplfl(xi)
From eigenvalues A1, ..., \; and eigenvectors ¢1, ..., ¢, of M, can

approximate eigenfunction of K, with Nystrom method:

B (x') 0 Y Prik(xi, x')

Bengio, Paiement, Vincent et al 2004

Trade-offs of manifold learning

© Exactly solvable by eigendecomposition

Trade-offs of manifold learning

© Exactly solvable by eigendecomposition
© Data efficient (works with O(1000) data points)

Trade-offs of manifold learning

© Exactly solvable by eigendecomposition
© Data efficient (works with O(1000) data points)
® Unsupervised learning without a generative model

Trade-offs of manifold learning

© Exactly solvable by eigendecomposition
© Data efficient (works with O(1000) data points)
©® Unsupervised learning without a generative model

© Learning scales as O(nlogn) with size of training data

Trade-offs of manifold learning

© Exactly solvable by eigendecomposition

© Data efficient (works with O(1000) data points)

© Unsupervised learning without a generative model

® Learning scales as O(nlogn) with size of training data

© Inference scales as O(n) with size of training data

Trade-offs of manifold learning

© Exactly solvable by eigendecomposition

© Data efficient (works with @(1000) data points)

® Unsupervised learning without a generative model

® Learning scales as O(nlogn) with size of training data
® Inference scales as O(n) with size of training data

® Performance degrades for noisy or clustered data

Trade-offs of manifold learning

OO 066060

Exactly solvable by eigendecomposition

Data efficient (works with O(1000) data points)
Unsupervised learning without a generative model
Learning scales as O(nlogn) with size of training data
Inference scales as O(n) with size of training data
Performance degrades for noisy or clustered data
Embeddings collapse on more complex data

Trade-offs of manifold learning

Exactly solvable by eigendecomposition

Data efficient (works with O(1000) data points)
Unsupervised learning without a generative model
Learning scales as O(nlogn) with size of training data
Inference scales as O(n) with size of training data
Performance degrades for noisy or clustered data

OO 060060

Embeddings collapse on more complex data

Other methods have become popular for low-dimensional visualization -
especially t-SNE (Maaten and Hinton 2008)

Collapsed embeddings

Hadsell, Chopra and LeCun 2006

Improving spectral embeddings

Bottom eigenfunctions of graph Laplacian of evenly-scaled grid are
natural coordinates

Pfau and Burgess 2018

Improving spectral embeddings

Bottom eigenfunctions of graph Laplacian of evenly-scaled grid are
natural coordinates

Bottom eigenfunctions of unevely-scaled grid are not

Pfau and Burgess 2018

Improving spectral embeddings

Bottom eigenfunctions of graph Laplacian of evenly-scaled grid are
natural coordinates

Bottom elgenfunctlons of unevely-scaled grid are not

H FEY IERY

Eigenfunctions must be orthogonal, but can still be predictable, e.g.
sin(2x) and sin(z) and cos(x).

Pfau and Burgess 2018

Improving spectral embeddings

Bottom eigenfunctions of graph Laplacian of evenly-scaled grid are
natural coordinates

Bottom eigenfunctions of unevely-scaled grid are not

Eigenfunctions must be orthogonal, but can still be predictable, e.g.
sin(2x) and sin(z) and cos(x).

Instead of using lowest eigenfunctions as embedding, use lowest
eigenfunctions that are unpredictable from lower eigenfunctions

Pfau and Burgess 2018

Minimally redundant Laplacian eigenmaps

After adding eigenfunctions ¢!,...,¢% to vt [0 — ¢fj+1||
embedding, evaluate ¢?*! as candidate. .

Pfau and Burgess 2018

Minimally redundant Laplacian eigenmaps

After adding eigenfunctions ¢!, ..., ¢% to ot (107 — o5
embedding, evaluate ¢?*! as candidate. o

If value of ¢¢*! at point i can be predicted
from nearest neighbors of i in ¢',..., ¢%, .
eigenfunction is too predictable S ¢d

Pfau and Burgess 2018

Minimally redundant Laplacian eigenmaps

175/3/ 28727

NORB: Model dataset for studying invariance in object recognition

Pfau and Burgess 2018; LeCun, Huang and Bottou 2005

Minimally redundant Laplacian eigenmaps

175/3/ 28727

NORB: Model dataset for studying invariance in object recognition

.’::L-s:‘ %
R

Consider a single object under different lighting and rotation

Pfau and Burgess 2018; LeCun, Huang and Bottou 2005

Minimally redundant Laplacian eigenmaps

T wid
uoljens|y

Dim 7

Dim 6

Dim 2

Twia
Yinwizy

Dim 7

Dim 6

T wig
Bunybr

Dim 3 Dim 4 Dim 5 Dim 6 Dim 7 Dim 8

Dim 2

Pfau and Burgess 2018

Minimally redundant Laplacian eigenmaps

e TEF Ry]
o ~
% ¢
Ha 5
w &

Dim 2

“FF Ty
s '? ~
g€ £
EZ £
2 (=}
.
Dim 2
P G =
o
c o~
se ¥ ¢
o0 a
-
.
Dim 2 Dim 5 Dim 6 Dim 7 Dim 8

With filtering by redundancy, all variation captured by 6 eigenfunctions

Pfau and Burgess 2018

Minimally redundant Laplacian eigenmaps

¢ TETNEY £ . :
o ? ~ N . ©] ~ e
©E £ e - - £ U E - [y X
= a 5 w28 o \ﬁ
] ., ? ot
* " +
Dim 5 Dim 6 Dim 7 Dim 8
. 1 . i
g-—' o~ 3 n ot ..' © q ~
£E 1= e £ TITRY E"-T' £ e
NO a a) a a s
g 3 o) o ner
. T * T
Dim 2 Dim 5 D Dim 8
PEES s TR } :
E‘H ? ~ - n ~ o0
£E £ E sl o £ “E & ..
o0 a a o T
— p &t
. *
Dim 2 Dim 5 Dim 6 Dim 7 Dim 8

With filtering by redundancy, all variation captured by 6 eigenfunctions
Works with less than 1000 points!

Pfau and Burgess 2018

Minimally redundant Laplacian eigenmaps

BEEEEEEOE
. &
* i BN EN A

Pfau and Burgess 2018

Minimally redundant Laplacian eigenmaps

BEEEEEEOE
. &
* i BN EN A

X Positi

Dim 3

Dim 2 Dim 2

Dim 4
Dim 4

Dim 1

B-VAE
Disentangling VAEs learn the dimension but not the topology

Pfau and Burgess 2018

Minimally redundant Laplacian eigenmaps

FEEEEE
" . &
® “ & & &

Dim 3
Dim 3
Dim 3
Dim 2
Dim 2
Dim 2

Dim 2

Dim 2 Dim 2 Dim 2 Dim 2 Dim 1 Dim 1

Dim 4
Dim 4
Dim 4
Dim 4
Dim 4

Dim 4

LT
Dim 1 Dim 1 Dim 1 Dim 1

3

B-VAE Laplacian eigenmaps
Disentangling VAEs learn the dimension but not the topology

Laplacian eigenmaps learns the topology but misses some dimensions

Pfau and Burgess 2018

Trade-offs of manifold learning

OO 066060

Exactly solvable by eigendecomposition

Data efficient (works with O(1000) data points)
Unsupervised learning without a generative model
Learning scales as O(nlogn) with size of training data
Inference scales as O(n) with size of training data
Performance degrades for noisy or clustered data
Embeddings collapse on more complex data

Trade-offs of manifold learning

© Exactly solvable by eigendecomposition

© Data efficient (works with O(1000) data points)

© Unsupervised learning without a generative model

© Learning scales as O(nlogn) with size of training data

© Inference scales as O(n) with size of training data

® Performance degrades for noisy or clustered data

© Collapsed embeddings can be fixed by choice of eigenvector

Trade-offs of manifold learning

© Exactly solvable by eigendecomposition

© Data efficient (works with O(1000) data points)

©® Unsupervised learning without a generative model

© Learning scales as O(nlogn) with size of training data

© Inference scales as O(n) with size of training data

® Performance degrades for noisy or clustered data

© Collapsed embeddings can be fixed by choice of eigenvector

© Can discover topology of data without prior assumptions

Part llb

Embedding Hierarchies in
Hyperbolic Spaces

Hierarchical data

Some data can be embedded uniformly in flat space

Hierarchical data

What about data with hierarchical structure?

Hierarchical data

(4r)N -1
N-1
" (3r)
o N-1
bl
b2
bS

Tree with branching factor b has b¢ nodes at layer £ - exponential growth

N-1

Area of sphere in RV with radius r grows as r - polynomial growth

Hierarchical data

Idea: embed nodes in hierarchy in hyperbolic space instead of flat space

Hyperbolic geometry

Hyperbolic space: manifold with constant
negative curvature

Hyperbolic geometry

Hyperbolic space: manifold with constant
negative curvature

Angles of triangle add to less than 180
degrees

Hyperbolic geometry

Hyperbolic space: manifold with constant
negative curvature

Angles of triangle add to less than 180
degrees

Surface area of spheres grows exponentially!

Hyperbolic geometry

Hyperbolic space: manifold with constant
negative curvature

Angles of triangle add to less than 180
degrees

Surface area of spheres grows exponentially!

Many possible models of hyperbolic space

The Poincaré ball

Maps hyperbolic space to open ball BY

Nickel and Kiela 2017

The Poincaré ball

Maps hyperbolic space to open ball BY

2
Metric: (u, V), p = (ﬁ) ulv

Nickel and Kiela 2017

The Poincaré ball

Maps hyperbolic space to open ball BY

2
Metric: (u, V), p = (ﬁ) ulv

Geodesics: Circles that are orthogonal to
boundary of ball

Nickel and Kiela 2017

The Poincaré ball

Maps hyperbolic space to open ball BY

2
Metric: (u, V), p = (ﬁ) ulv

Geodesics: Circles that are orthogonal to
boundary of ball

Distances: I &
d(u, v) = arcosh (1 + 2W>

Nickel and Kiela 2017

Poincaré embeddings for learning hierarchical
representation

Given edges £ from a graph, find an embedding u; for vertex i that

minimizes:
e—d(ui,uj)

—d(uj,u,)
ijeE Zj’ stijige © ’

Nickel and Kiela 2017

Poincaré embeddings for learning hierarchical
representation

Given edges £ from a graph, find an embedding u; for vertex i that

minimizes:
e—d(ui ;U)

d(u;,uyr)

igee Xyrstijrge

Nickel and Kiela 2017

Poincaré embeddings for learning hierarchical
representation

Given edges £ from a graph, find an embedding u; for vertex i that

minimizes:
> " log -
igee Xyrstijrge

e—d(ui,uj)

d(u;,uyr)

Dimensionality
5 10 20 50 100 200

© Euclidean RoNk 3523 22869 16859 12817 11873 11573
" 0024 0059 0087 0140 0162 0168
5]
z3 . Rak 2059 1794 953 928 97 910
g Tranlational ypp 0517 0503 0563 0566 0562 0565
S Rak 49 402 384 398 39 383

& Poincaré

MAP 0.823 0.851 0.855 0.86 0.857 0.87

Euelid Rank 33111 21995 9523 3514 1907 815
uclidean MAP 0024 0059 0176 0286 0428 0490

]

m

zE Rak 657 566 521 472 432 404

gy Tranlational ypp 0545 054 0554 056 0562 0559

B2 pincaré Rank 5.7 43 49 46 46 46
omcare

MAP 0.825 0.852 0.861 0.863 0.856 0.855

State of the art results on link reconstruction and link prediction on
WORDNET noun dataset

Nickel and Kiela 2017

Poincaré embeddings for learning hierarchical
representation

Given edges £ from a graph, find an embedding u; for vertex i that

minimizes:
> " log -
igee Xyrstijrge

e—d(ui,uj)

d(u;,uyr)

Table 3: Spearman’s p for Lexical Entailment on HYPERLEX.

FR SLQS-Sim WN-Basic WN-WuP WN-LCh Vis-ID Euclidean Poincaré

p 0283 0.229 0.240 0.214 0.214 0.253 0.389 0.512

State of the art results on graded lexical entailment on HYPERLEX

Nickel and Kiela 2017

Trade-offs of Poincaré model

© Geodesics are simple

Trade-offs of Poincaré model

© Geodesics are simple

© Metric is diagonal

Trade-offs of Poincaré model

© Geodesics are simple
© Metric is diagonal
® Gradients of metric are unstable near boundary

The Lorentz model

Maps N-dim hyperbolic space to surface in
RN+1

Nickel and Kiela 2018

The Lorentz model

Maps N-dim hyperbolic space to surface in
RN+1

N
(u, V>£ = —UgVg + Zi:—il_l U;V;

Nickel and Kiela 2018

The Lorentz model

Maps N-dim hyperbolic space to surface in
RN+1

N
(u, V>£ = —UgVg + Zi:—il_l U;V;

HY = {x e RV*L: (x,x), = —1,2¢ > 0}

Nickel and Kiela 2018

The Lorentz model

Maps N-dim hyperbolic space to surface in
RN+1

N
(u, V>£ = —UgVg + zi:—il_l U;V;

HY = {x e RV*L: (x,x), = —1,2¢ > 0}

Metric: (u, V)7, = (u,v), us v

Nickel and Kiela 2018

The Lorentz model

Maps N-dim hyperbolic space to surface in
RN+1

N
(u,v) = —ugvg + Ziz—il—l Uil;

HY = {x e RN (x,x), = 1,20 > 0}

Metric: (u,v)p, £ = (u,v)e un v

Geodesics: starting at x and going in
direction v, ||v]|, =1

expy (tv) = cosh(t)x + sinh(t)v

Nickel and Kiela 2018

The Lorentz model

Maps N-dim hyperbolic space to surface in
RN—i—l

N
(u,v) = —ugvg + Zi:tl Uil;

HY = {x e RN (x,x), = 1,20 > 0}

Metric: (u,v)p, £ = (u,v)e un v

Geodesics: starting at x and going in
direction v, ||v]|, =1

expy (tv) = cosh(t)x + sinh(t)v
Projection: maps vectors onto tangent space:

proj,(u) =u+ (x,u),

Nickel and Kiela 2018

Riemannian SGD

Scale Euclidean gradient by inverse metric:

h = M;'Vf(x)

Bonnabel 2013

Riemannian SGD

Scale Euclidean gradient by inverse metric:

h=M_'Vf(x)

Project gradient onto tangent space:

gradf(x) = proj(h)

Bonnabel 2013

Riemannian SGD

Scale Euclidean gradient by inverse metric:

h=M_'Vf(x)

Project gradient onto tangent space:

gradf(x) = proj(h)

Follow geodesic along Riemannian gradient:

X ¢ exp, (—ngradf(x))

Bonnabel 2013

Learning continuous hierarchies in the Lorentz model

‘WORDNET Nouns WORDNET Verbs EUROVOC ACM MESH
2 5 10 2 5 10 2 5 10 2 5 10 2 5 10
Poincaré 907 49 402 1071 139 135 2.83 125 123 414 18 171 6111 1405 128
MR Lorentz 228 3.18 295 364 126 123 163 124 117 305 167 163 3899 1413 1242
A% 748 351 362 660 96 89 424 61 34 263 72 48 362 -05 29
Poincaré 118 828 865 365 910 912 643 940 944 693 941 948 195 763 794
MAP Lorentz 305 923 928 579 935 933 87.1 958 965 829 966 970 348 777 799
A% 613 103 68 586 27 23 356 1.6 20 196 27 23 439 18 06
Poincaré 138 57.2 585 110 541 551 375 575 614 598 635 629 422 699 749
P Lorentz 410 589 595 479 555 566 545 617 675 659 659 659 645 714 763

Significant improvement over Poincaré, especially in low dimensions

vl () fommarsr)
s - =7y o Id High German
o gee o] o Ccivmmeal el Ancient Greek gmm—l
N AL CETT) e et o)
O “frrw (ST . M\
o oviR A 3 =)
- = s Trh)
i . o [persian List westan
S ‘t“&?c‘.‘ﬁ""’"“”) P = ¢
1 4 (o) ¥ o i A 4 Jowmisan)
f = o o §
ez AR S ihrdsa.) [S [0)
[Fecners. wm) 1) osan
Ca e . (i)
e m) o \
Dina S] e (o) owia e - \
s) Jaeninzicas ,,,J,,w
= LD [iomrom) s (s
foerm) & & (e)
s {pmowm) | e
. [raresin)
< * [mom) XD O

shelleyC. ()]
. e

Nickel and Kiela 2018

Hyperbolic Attention Networks

Einstein Mldpnlnt

Attention
Weights (a)
Hyperbolic Inverse
Distance d} (@, K') Temperature (B)

!

To Hyperboloid

To Polar To Pelar
Coordinates Coord inates

Imposes hyperbolic geometry on activations of deep network with attention

To Hyperbclold

Gulcehre, Denil, Malinowski et al 2018

Part llc

Analyzing the Geometry of
Deep Generative Models

What is the shape of latent space?

' FEEELR
"EEEFE

Svymean =

Higgins, Matthey, Pal et al 2017

99066
P999¢¢ ¢
P9999
29299
Teeee

What is the shape of latent space?

- EEEER
"EEEFE

Svymeenn

A43da
2deaa
gean
L L Taeher)
PODAD

Are straight lines in latent space really straight?

Higgins, Matthey, Pal et al 2017

What is the shape of latent space?

- EEEER
"EEEFE

Svymeenn

A43da
2deaa
gean
L L Taeher)
PODAD

Are straight lines in latent space really straight?

What is the right notion of distance in latent space?

Higgins, Matthey, Pal et al 2017

Latent space metric

Deep generative model with decoder f(z)

Arvanitidis, Hansen and Hauberg 2018

Latent space metric

Deep generative model with decoder f(z)

Manifold X’ generated by f has tangent space T,X = span(J,) where
J, is Jacobian of f at z

Arvanitidis, Hansen and Hauberg 2018

Latent space metric

Deep generative model with decoder f(z)

Manifold X’ generated by f has tangent space T,X = span(J,) where
J, is Jacobian of f at z

Use ¢5 metric in observation space as metric in latent space:

(Azl, AZ2>T,X = AZ{JZ—'JZA22 = AZ,{‘MZAZQ

Arvanitidis, Hansen and Hauberg 2018

Geodesic equation

How do we derive the geodesic equation from the introduction:
¥ = =Ty (3(t),¥(t))

Geodesic equation

How do we derive the geodesic equation from the introduction:
¥ = =Ty (3(t),¥(t))

1
¥ =minS[y] = min/ dtL(~y,~,t)
ol Y 0

Geodesic equation

How do we derive the geodesic equation from the introduction:

v =

7" = min Sy
Y

7I"y(t) (W(t)v V(t))

1
= min/ dtL(~y,~,t)
7 Jo

= min/o1 dt <’y(t),fy<t)

v >Tw>?‘

Geodesic equation

How do we derive the geodesic equation from the introduction:
;5/ = 7F'y(t) (W(t)v V(t))

1
¥ =minS[y] = min/ dtL(~y,~,t)
ol Y 0

1 . .
i dt t t
win [t (3(090),
1
— min / dt > M 4i(1)5(8)
0 ij

Y

Geodesic equation

How do we derive the geodesic equation from the introduction:
;5/ = 7F'y(t) (W(t)v V(t))

1
¥ =minS[y] = min/ dtL(~y,~,t)
ol Y 0

1 . .
i dt t t
win [t (3(090),
1
— min / dt > M 4i(1)5(8)
0 ij

Y

Euler-Lagrange equation:
OL d 0L
oy dt O+

Geodesic equation

How do we derive the geodesic equation from the introduction:
¥ = =Ty (3(t),¥(t))

1

v =minS[y] = min/ dtL(v,%,t)
¥ Y Jo

1 . .

i dt t t

mym/0 <7():()>TW)X
1
= min/ dtZMfyj(t)ﬁ/i(t);Yj(t)

Y

Euler-Lagrange equation:
oL d oL
oy dt O+

Exercise: Derive the left and right side of the Euler-Lagrange equation

Geodesic equation

8M3k
=5 05 045 (0)
6% i /

jk

Geodesic equation

gk
5% — Oy Vi

4oL _ 4 i s OM . i s
G (zzMj(mj(t)) = 2y l o (1) + M5 (1)
j .

J

oM

J k

= 2) lz . vvk(w A (8) 75 () + Mij(tﬁj (t)]

Geodesic equation

8M3kt
)
=3 =25t (0)
671 ik 871
doL _ d - M) . b
Ea_% d (ZMW(t’yJ) = 22[az <)+M](t)'7]()
J

oMY ,
= 2 lZ o A (E 1) + M <t>]
J k

30 =35 (M) S, | (252 - 252) 4030

Geodesic equation

8M3kt
)
Z (t)7;(t)
6% m i
d OL d . aMfy](t) T
Ea_% d (ZMW(t’yJ) = 22[ot <)+M]()'7]()
J

oMY iy
= 2y [Z 377;: L (845 (1) + M, % (t)]
J k

53(t) = = S T) 38351
Ti(@) = § (M) (220 - 2

T Oz, ox;

Geodesic equation

jk
Z M’Y(t))7, (1)
6% - i J

doL d . oM o
dt oy dt (QZMv(t)%) = 22[8W(t)%()+Mj(tﬂj(t)]

J
M”

22 [Z (83 () + M;jmm]

F5(t) = = e T (1 (0 (£) 35 (2)

ik 1 —1\¥J [oOMY OMIF

I‘;k(ac) are the parameters of the Levi-Civita connection:
unique connection induced by the metric

The geodesics of deep generative models

True labels Riemannian Euclidean

Digits Linear Riemannian

{0,1,2} 77.57(£0.87)% 94.28(+1.14)%
{3,4,7} 77.80(:0.91)% 89.54(+1.61)%
{5,6,9} 64.93(x0.96)% 81.13(+2.52)%

Table 1: The F-measure results for k-means.

Classification from latent representations is better

Arvanitidis, Hansen and Hauberg 2018

The geodesics of deep generative models

True lnbels N Riem

Digits Linear Riemannian
{0,1,2} 77.57(£0.87)% 94.28(+1.14)%
{3,4,7} 77.80(£0.91)% 89.54(+1.61)%
{5,6,9} 64.93(£0.96)% 81.13(£2.52)%

) o s s o 3 % > 3 Table 1: The F-measure results for k-means.

Classification from latent representations is better

Transitions along geodesics are smoother

Arvanitidis, Hansen and Hauberg 2018

Summary

Differential geometry and spectral theory are a powerful suite of tools
for thinking about the geometry of data

Summary

Differential geometry and spectral theory are a powerful suite of tools
for thinking about the geometry of data

Straight lines generalize to geodesics, which are defined from the local
metric structure

Summary

Differential geometry and spectral theory are a powerful suite of tools
for thinking about the geometry of data

Straight lines generalize to geodesics, which are defined from the local
metric structure

The spectrum of the Laplacian generalizes Fourier analysis to graphs
and manifolds

Summary

Differential geometry and spectral theory are a powerful suite of tools
for thinking about the geometry of data

Straight lines generalize to geodesics, which are defined from the local
metric structure

The spectrum of the Laplacian generalizes Fourier analysis to graphs
and manifolds

Classic manifold learning uses spectral decompositions to map data
manifolds in high-dim space to flat space

Summary

Differential geometry and spectral theory are a powerful suite of tools
for thinking about the geometry of data

Straight lines generalize to geodesics, which are defined from the local
metric structure

The spectrum of the Laplacian generalizes Fourier analysis to graphs
and manifolds

Classic manifold learning uses spectral decompositions to map data
manifolds in high-dim space to flat space

Hierarchical data is naturally mapped to hyperbolic space

Summary

Differential geometry and spectral theory are a powerful suite of tools
for thinking about the geometry of data

Straight lines generalize to geodesics, which are defined from the local
metric structure

The spectrum of the Laplacian generalizes Fourier analysis to graphs
and manifolds

Classic manifold learning uses spectral decompositions to map data
manifolds in high-dim space to flat space

Hierarchical data is naturally mapped to hyperbolic space

The latent space of deep generative models is better understood as
being curved

Part I

Spectral Deep Learning

Part llla

Convolutions on

Graphs and Manifolds

Key properties of CNNs

C3: f. maps 16@10x10
Ci1: zlgatzure maps S4: f. maps 16@5x5
X

Full conrlnection | Gaussian connections
Convolutions Subsampling Convolutions St pling Full ion

© Convolutional (Translation invariance)

LeCun et al. 1989

Key properties of CNNs

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5
6@28x28

|
Full conrlnection | Gaussian connections
Convolutions Subsampling Convolutions St pling Full ion

© Convolutional (Translation invariance)

© Scale Separation (Compositionality)

LeCun et al. 1989

Key properties of CNNs

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5
6@28x28

|
Full conrlnection | Gaussian connections
Convolutions Subsampling Convolutions St pling Full ion

© Convolutional (Translation invariance)
© Scale Separation (Compositionality)
© Filters localized in space (Deformation Stability)

LeCun et al. 1989

Key properties of CNNs

C3: f. maps 16@10x10
Ci1: zlgatzure maps S4: f. maps 16@5x5
X

|
‘ Full conrlnection | Gaussian connections
Convolutions Subsampling Convolutions St pling Full i

© Convolutional (Translation invariance)

© Scale Separation (Compositionality)

© Filters localized in space (Deformation Stability)

© O(1) parameters per filter (independent of input image size n)

LeCun et al. 1989

Key properties of CNNs

C3: f. maps 16@10x10
Ci1: zlgatzure maps S4: f. maps 16@5x5
X

|
‘ Full conrlnection | Gaussian connections
Convolutions Subsampling Convolutions St pling Full i

© Convolutional (Translation invariance)

© Scale Separation (Compositionality)

© Filters localized in space (Deformation Stability)

© O(1) parameters per filter (independent of input image size n)
© O(n) complexity per layer (filtering done in the spatial domain)

LeCun et al. 1989

Key properties of CNNs

C3: f. maps 16@10x10
Ci1: zlgatzure maps S4: f. maps 16@5x5
X

|
‘ Full conrlnection | Gaussian connections
Convolutions Subsampling Convolutions St pling Full i

© Convolutional (Translation invariance)

© Scale Separation (Compositionality)

© Filters localized in space (Deformation Stability)

© O(1) parameters per filter (independent of input image size n)
© O(n) complexity per layer (filtering done in the spatial domain)
© O(logn) layers in classification tasks

LeCun et al. 1989

CNNs and Euclidean Geometry

CNNs are defined over Euclidean domains or Grids 2. Two fundamental
properties:

Translation Invariance (yielding convolutions).
Multiscale structure (yielding downsampling).

Inductive bias that exploits stationarity and deformation stability of
many tasks.

CNNs and Euclidean Geometry

CNNs are defined over Euclidean domains or Grids 2. Two fundamental
properties:

Translation Invariance (yielding convolutions).
Multiscale structure (yielding downsampling).

Inductive bias that exploits stationarity and deformation stability of
many tasks.

Roadmap: extend CNNs to non-Euclidean geometries by replacing
filtering and pooling by appropriate operators

Convolution: Euclidean space

Given two functions f, g : [—m, 7] — R their convolution is a function

T

(fxg)(x)= [[fa")g(x—a")da’

—T

Convolution: Euclidean space

Given two functions f, g : [—m, 7] — R their convolution is a function

r+9)e) = | " fa)g(a — o)da!

—T

Shift-invariance: f(x — zo) * g(z) = (f * g)(x — x0)

Convolution: Euclidean space

Given two functions f, g : [—m, 7] — R their convolution is a function

r+9)e) = | " fa)g(a — o)da!

—T

Shift-invariance: f(x — zo) * g(z) = (f * g)(x — x0)

Convolution theorem: Fourier transform diagonalizes the convolution operator

Convolution: Euclidean space

Given two functions f, g : [—m, 7] — R their convolution is a function

r+9)e) = | " fa)g(a — o)da!

—T

Shift-invariance: f(x — zo) * g(z) = (f * g)(x — x0)
Convolution theorem: Fourier transform diagonalizes the convolution operator
= convolution can be computed in the Fourier domain as

— ~

(fxg)=1f-9

Convolution: Euclidean space

Given two functions f, g : [—m, 7] — R their convolution is a function

r+9)e) = | " fa)g(a — o)da!

—T

Shift-invariance: f(x — zo) * g(z) = (f * g)(x — x0)

Convolution theorem: Fourier transform diagonalizes the convolution operator
= convolution can be computed in the Fourier domain as
J— R

(fxg)=1f-9

Efficient computation using FFT

Convolution Theorem

Convolution of two vectors £ = (f1,..., fn)" and g = (g1,...,9n) "
g g2 e oo Gn
9n 91 G2 oo Gn-1 fi
frg = S T T :
93 94 --- g1 G2 fn

g2 g3 - - @1

Convolution Theorem

Convolution of two vectors £ = (f1,..., fn)" and g = (g1,...,9n) "
g g2 e oo Gn
gn 91 92 --. Gn-1 fi
fxg = T e : :
93 94 --- g1 G2 fn
g2 gs a1

circulant matrix

Convolution Theorem

Convolution of two vectors £ = (f1,..., fn)" and g = (g1,...,9n) "
g g2 e oo Gn
gn 91 92 --. Gn-1 fi
fxg = T e : :
93 94 --- g1 G2 fn
g2 gs a1

diagonalized by Fourier basis

Convolution Theorem

Convolution of two vectors £ = (f1,..., fn)" and g = (g1,...,9n) "

a1 g2 . . dn
9n 91 G2 oo Gn-1 fi

frg = S T T :
93 94 --- g1 G2 fn
9 g3 e . @

g1
- o'f

Convolution Theorem

Convolution of two vectors £ = (f1,..., fn)" and g = (g1,...,9n) "

g g2 e oo Gn

9n 91 G2 oo Gn-1 fi

frg = S T T :

93 94 --- g1 G2 fn
9 g3 e . @
0 A

= &

Convolution Theorem

Convolution of two vectors f = (f1,..., f.)" and g = (g1, ...
g 92 - o Gn
9n 91 G2 oo Gn-1 fi

fxg = T e
g3 g4 --- g1 92 In
g2 93 - . @
fi o
= &

»9n

)T

Spectral convolution

Spectral convolution of f, g € L?(V) can be defined by analogy

frg = > (F,d1)200)(8 Br)r2(v) Pr

k>1

Spectral convolution

Spectral convolution of f, g € L?(V) can be defined by analogy

fxg = Z<fa¢k>L2(V)<gv¢k>L2(V)¢k

k>1

product in the Fourier domain

Spectral convolution

Spectral convolution of f, g € L?(V) can be defined by analogy

fxg = Z<fa¢k>L2(V)<gv¢k>L2(v)¢k

k>1

product in the Fourier domain

inverse Fourier transform

Spectral convolution

Spectral convolution of f, g € L?(V) can be defined by analogy

fxg = Z<fa¢k>L2(V)<gv¢k>L2(V)¢k

k>1

In matrix-vector notation

frg=®(®'g)o(®'f)

Spectral convolution

Spectral convolution of f, g € L?(V) can be defined by analogy

fxg = Z<fa¢k>L2(V)<gv¢k>L2(V)¢k

k>1

In matrix-vector notation

frg= ®diag(js,...,jn)®@

Spectral convolution

Spectral convolution of f, g € L?(V) can be defined by analogy

fxg = Z (£, D1)L2(v) (8, Pr) L2(v) P
k>1
In matrix-vector notation

frg= ®diag(js,...,jn)®@ f
G

Spectral convolution

Spectral convolution of f, g € L?(V) can be defined by analogy

fxg = Z (£, D1)L2(v) (8, Pr) L2(v) P
k>1
In matrix-vector notation

frg= ®diag(js,...,jn)®@ f
G

Not shift-invariant! (G has no circulant structure)

Spectral convolution

Spectral convolution of f, g € L?(V) can be defined by analogy

fxg = Z (£, D1)L2(v) (8, Pr) L2(v) P
k>1
In matrix-vector notation

frg= ®diag(js,...,jn)®@ f
G

Not shift-invariant! (G has no circulant structure)

Filter coefficients depend on basis ¢1,..., ¢,

Effect of spectral convolution

Function f

Effect of spectral convolution

‘Edge detecting’ spectral filter ®G® T f

Effect of spectral convolution

Same spectral filter, different basis $GW¥ T f

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

Effect of spectral convolution

High-frequency Laplacian eigenvector ¢so

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}

Part ll1b

Spectral Graph Convolutional
Neural Networks

Spectral graph CNN

Convolution expressed in the spectral domain
g=dWod'f

where W is n x n diagonal matrix of learnable spectral filter coefficients

Bruna, Zaremba, Szlam, LeCun 2014

Spectral graph CNN

Convolution expressed in the spectral domain
g=®dWd'f

where W is n x n diagonal matrix of learnable spectral filter coefficients

© Filters are basis-dependent = does not generalize across graphs!

Bruna, Zaremba, Szlam, LeCun 2014

Spectral graph CNN

Convolution expressed in the spectral domain
g=®dWd'f

where W is n x n diagonal matrix of learnable spectral filter coefficients

© Filters are basis-dependent = does not generalize across graphs!
© O(n) parameters per layer

Bruna, Zaremba, Szlam, LeCun 2014

Spectral graph CNN

Convolution expressed in the spectral domain
g=®dWd'f

where W is n x n diagonal matrix of learnable spectral filter coefficients

© Filters are basis-dependent = does not generalize across graphs!
© O(n) parameters per layer

® O(n?) computation of forward and inverse Fourier transforms & ', &
(no FFT on graphs)

Bruna, Zaremba, Szlam, LeCun 2014

Spectral graph CNN

Convolution expressed in the spectral domain
g=®dWd'f

where W is n x n diagonal matrix of learnable spectral filter coefficients

© Filters are basis-dependent = does not generalize across graphs!
© O(n) parameters per layer

® O(n?) computation of forward and inverse Fourier transforms & ', &
(no FFT on graphs)

® No guarantee of spatial localization of filters

Bruna, Zaremba, Szlam, LeCun 2014

Localization and Smoothness

Vanishing moments: In the Euclidean setting

“+o00 “+o0 akA
[erisepa= [2

2

dw

Bruna, Zaremba, Szlam, LeCun 2014; Henaff, Bruna, LeCun 2015

Localization and Smoothness

Vanishing moments: In the Euclidean setting

+o00 “+00 k §
| ePrera = [|2

2
dw

Owk
Localization in space = smoothness in frequency domain

Bruna, Zaremba, Szlam, LeCun 2014; Henaff, Bruna, LeCun 2015

Localization and Smoothness

Vanishing moments: In the Euclidean setting

+o00 “+00 k §
| s@pa = [\ 20

2
dw

Owk
Localization in space = smoothness in frequency domain

Parametrize the filter using a smooth spectral transfer function 7(X)

Bruna, Zaremba, Szlam, LeCun 2014; Henaff, Bruna, LeCun 2015

Localization and Smoothness

Vanishing moments: In the Euclidean setting

+o00 “+00 k §
| s@pa = [\ 20

2
dw

Owk
Localization in space = smoothness in frequency domain
Parametrize the filter using a smooth spectral transfer function 7(X)
Application of the filter

(A = ®T(A)P ' f

Bruna, Zaremba, Szlam, LeCun 2014; Henaff, Bruna, LeCun 2015

Localization and Smoothness

Vanishing moments: In the Euclidean setting

+o00 +o00 k£
| s@pa = [\ 20

2
dw

Owk
Localization in space = smoothness in frequency domain
Parametrize the filter using a smooth spectral transfer function 7(X)

Application of the filter

Bruna, Zaremba, Szlam, LeCun 2014; Henaff, Bruna, LeCun 2015

Localization and Smoothness

Vanishing moments: In the Euclidean setting

+o00 “+00 k §
| s@pa = [\ 20

2
dw

Owk
Localization in space = smoothness in frequency domain
Parametrize the filter using a smooth spectral transfer function 7(X)
Application of the parametric filter with learnable parameters «
Ta(/\l)
Ta(A)f = & o'f
Ta(An)

Bruna, Zaremba, Szlam, LeCun 2014; Henaff, Bruna, LeCun 2015

Localization and smoothness

+1

-1
0 frequency ~ *s00

Non-smooth spectral filter (delocalized in space)

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}

Localization and smoothness

+1

-1
0 frequency ~ *s00

Smooth spectral filter (localized in space)

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}

Spectral graph CNN with polynomial filters (ChebNet)

Represent spectral transfer function as a polynomial or order r
K
Ta(A) = Z a; N
Jj=0

where a = (ag, ..., a,) " is the vector of filter parameters

Defferrard, Bresson, Vandergheynst 2016; Kipf, Welling 2016

Spectral graph CNN with polynomial filters (ChebNet)

Represent spectral transfer function as a polynomial or order r
T
Ta(A) = Z a; N
Jj=0

where a = (ag, ..., a,) " is the vector of filter parameters

© O(1) parameters per layer

Defferrard, Bresson, Vandergheynst 2016; Kipf, Welling 2016

Spectral graph CNN with polynomial filters (ChebNet)

Represent spectral transfer function as a polynomial or order r
T
Ta(A) = Z a; N
Jj=0

where a = (ag, ..., a,) " is the vector of filter parameters

© O(1) parameters per layer
© Filters have guaranteed r-hops support

Defferrard, Bresson, Vandergheynst 2016; Kipf, Welling 2016

Spectral graph CNN with polynomial filters (ChebNet)

Represent spectral transfer function as a polynomial or order r
T
Ta(A) = Z a; N
Jj=0

where a = (ag, ..., a,) " is the vector of filter parameters

© O(1) parameters per layer
© Filters have guaranteed r-hops support

© No explicit computation of &', ® = O(nr) computational com-
plexity

Defferrard, Bresson, Vandergheynst 2016; Kipf, Welling 2016

Example: citation networks

/

Figure: Monti, Boscaini, Masci, Rodola, Svoboda, Bronstein 2017

Example: citation networks

Method Cora’ PubMed’
Manifold Regularization® 59.5% 70.7%
Semidefinite Embedding® 59.0% 71.1%

Label Propagation’ 68.0% 63.0%
DeepWalk® 67.2% 65.3%
Planetoid” 75.7% 77.2%

Spectral graph CNN°® 81.6% 78.7%

Classification accuracy of different methods on citation network datasets

Data: 1:2Sen et al. 2008; methods: 3Belkin et al. 2006; *Weston et al. 2012; ®Zhu et
al. 2003; ®Perozzi et al. 2014; TYang et al. 2016; 3Kipf, Welling 2016 (simplification
of ChebNet)

Graph pooling

G' G? Coarsening structure

[o][+T2] 3]+ s e][7]
NSRRI 1Y
(—2)
[o] [1]
(binary tree)

&2

Produce a sequence of coarsened graphs

Graph pooling

G' G? Coarsening structure

@‘@ [o][+T2] 3]+ s e][7]

(binary tree)

Produce a sequence of coarsened graphs

Max or average pooling of collapsed vertices

Graph pooling

G' G? Coarsening structure

@‘@ [o][+T2] 3]+ s e][7]

(binary tree)

Produce a sequence of coarsened graphs
Max or average pooling of collapsed vertices

Binary tree arrangement of node indices

Limitations of spectral graph CNNs

® Poor generalization across domains with different shapes unless kernels
are localized

Limitations of spectral graph CNNs

® Poor generalization across domains with different shapes unless kernels
are localized (can be remedied to some extent with spectral transformer
networks')

1Yi, Su, Guo, Guibas 2017

Limitations of spectral graph CNNs

® Poor generalization across domains with different shapes unless kernels
are localized (can be remedied to some extent with spectral transformer
networks')

® Spectral kernels are isotropic due to rotation invariance of the Laplacian

1Yi, Su, Guo, Guibas 2017

Only rotationally-symmetric kernels!

Example of Chebyshev filters (order r = 7) on Euclidean grid

Anisotropic kernels on manifolds

Scale ¢ Orientation 0 Elongation «

Examples of anisotropic heat kernels on a manifold

Boscaini, Masci, Rodola, Bronstein, Cremers 2016

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton4'){ocgs[i].state=false;}}

Limitations of spectral graph CNNs

® Poor generalization across domains with different shapes unless kernels
are localized (can be remedied to some extent with spectral transformer
networks')

® Spectral kernels are isotropic due to rotation invariance of the Laplacian
(on manifolds, anisotropic Laplacians can be constructed”)

Yi, Su, Guo, Guibas 2017; 2Boscaini, Masci, Rodola, Bronstein, Cremers 2016

Limitations of spectral graph CNNs

® Poor generalization across domains with different shapes unless kernels
are localized (can be remedied to some extent with spectral transformer
networks')

® Spectral kernels are isotropic due to rotation invariance of the Laplacian
(on manifolds, anisotropic Laplacians can be constructed”)

© Only undirected graphs, as symmetry of the Laplacian matrix is assumed

1Yi, Su, Guo, Guibas 2017; 2Boscaini, Masci, Rodola, Bronstein, Cremers 2016

Different formulations of non-Euclidean CNNs

Spectral domain Spatial domain

Different formulations of non-Euclidean CNNs

Spectral domain Spatial domain

Geometric Deep Learning Tutorial: NIPS 2017
https://vimeo.com/248497329

Summary

The convolution theorem allows us to generalize convolution operators
from grids to graphs

Summary

The convolution theorem allows us to generalize convolution operators
from grids to graphs

Naive spectral graph CNNs are unstable to deformation

Summary

The convolution theorem allows us to generalize convolution operators
from grids to graphs

Naive spectral graph CNNs are unstable to deformation

Forcing the filter spectrum to be smooth stabilizes and localizes filters

Summary

The convolution theorem allows us to generalize convolution operators
from grids to graphs

Naive spectral graph CNNs are unstable to deformation

Forcing the filter spectrum to be smooth stabilizes and localizes filters

Pooling operation can be replaced with graph pooling

Part Illc

Inference in Spectral Learning
with Deep Networks

Manifold learning (again)

Basic pattern:

Construct Gram matrix from kernel k(x,x’)

k(x1,x1) k(x1,x%x2) ... k(x1,%xp)
k(xo,x1) k(X2,X2) ... k(X2,X,
o | o) kb))
kE(xn,x1) k(xXp,x2) ... k(Xn,Xn)

Use top/bottom eigenvectors of Gram matrix as embedding

Use Nystrém approximation for inference on held-out data:

(Z(bkz X X)

Manifold learning (again)

Basic pattern:

Construct Gram matrix from kernel k(x,x’)

k(x1,x1) k(x1,x%x2) ... k(x1,%xp)
k(xo,x1) k(X2,X2) ... k(X2,X,
o | KO K)o k)
kE(xn,x1) k(xXp,x2) ... k(Xn,Xn)

Use top/bottom eigenvectors of Gram matrix as embedding

Use Nystrém approximation for inference on held-out data:

(E¢kz X X)

Why not just learn parameterized ¢y (x) directly?

Deep learn all the things

A successful strategy: take a branch of machine learning and fit the
model using a deep network

Deep learn all the things

A successful strategy: take a branch of machine learning and fit the
model using a deep network

Variational Bayes: Variational autoencoders

Deep learn all the things

A successful strategy: take a branch of machine learning and fit the
model using a deep network

Variational Bayes: Variational autoencoders

Reinforcement Learning: Deep RL (DQN, A3C, PPO, TRPO, DDPG...)

Deep learn all the things

A successful strategy: take a branch of machine learning and fit the
model using a deep network

Variational Bayes: Variational autoencoders
Reinforcement Learning: Deep RL (DQN, A3C, PPO, TRPO, DDPG...)

Spectral Learning: 7777

Deep learn all the things

A successful strategy: take a branch of machine learning and fit the
model using a deep network

Variational Bayes: Variational autoencoders
Reinforcement Learning: Deep RL (DQN, A3C, PPO, TRPO, DDPG...)

Spectral Learning: Spectral Inference Networks

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018

Trade-offs of manifold learning

© Exactly solvable by eigendecomposition

© Data efficient (works with O(1000) data points)

® Unsupervised learning without a generative model

® Learning scales as O(nlogn) with size of training data

® Inference scales as O(n) with size of training data

® Performance degrades for noisy or clustered data

© Collapsed embeddings can be fixed by choice of eigenvector

© Can discover topology of data without prior assumptions

Trade-offs of manifold learning

© Exactly solvable by eigendecomposition

© Data efficient (works with O(1000) data points)

© Unsupervised learning without a generative model

© Learning scales as O(nlogn) with size of training data
© Inference scales as O(n) with size of training data

® Performance degrades for noisy or clustered data

© Collapsed embeddings can be fixed by choice of eigenvector

© Can discover topology of data without prior assumptions

Spectral inference networks trade the first two for the second two

Eigendecomposition as optimization

Rayleigh quotient has top eigenvector as argmax:

¢" A
max
¢ @'

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018

Eigendecomposition as optimization

Rayleigh quotient has top eigenvector as argmax:

¢" A
max
¢ @'

Generalize to multiple eigenvectors (up to rotation):

max Tr ((tI>T<I>)‘1'IvTA<I>)

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018

Eigendecomposition as optimization

Rayleigh quotient has top eigenvector as argmax:

¢" A
max
¢ @'

Generalize to multiple eigenvectors (up to rotation):

max Tr ((@%)*%TA@)

-1
max Tr <Z¢ ¢>> > Aidl ¢,
j

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018

Eigendecomposition as optimization

Rayleigh quotient has top eigenvector as argmax:

¢" A
max
¢ @'

Generalize to multiple eigenvectors (up to rotation):

max Tr ((@Tcp)*@TA@)

max Tr (Ex [#()(07] " Ex [kx,x)p(00(x)"])

Replace A;; with k(x,x’) and sums with expectations

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018

Eigendecomposition as optimization

Most machine learning:
max Ex[fy (x)]

Empirical gradient in unbiased

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018

Eigendecomposition as optimization

Most machine learning:
max Ex[fy (x)]

Empirical gradient in unbiased

Spectral inference networks:

1

mas Tr (s [0 ()69 ()] B [k0x, %) (x)b0(x)"])

Empirical gradient is biased

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018

Eigendecomposition as optimization

Most machine learning:
max Ex[fy (x)]

Empirical gradient in unbiased
Spectral inference networks:

max Tr (Bx [95(x)09(x)"] " Exer [k, %) (%) (x)"])
Empirical gradient is biased

Solution: use moving average of gradient of ¢g¢} term

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018

Spectral inference network gradients

Objective is of the form Tr(X~'II)

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018

Spectral inference network gradients

Objective is of the form Tr(X~'II)

Gradient is of the form Tr (27!V,II) — Tr (S IIE'V,X)

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018

Spectral inference network gradients
Objective is of the form Tr(X~'II)
Gradient is of the form Tr (£71V,II) — Tr (Z 7' IIE 1V, %)
To break symmetry between eigenfunctions, use gradient
Tr (L~ "diag(L) ' VoII) — Tr (L™ "triu (Adiag(L) ") V,X)

where L is Cholesky decomposition of IT and A = L™ 'TIIL~ T

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018

Spectral inference network gradients
Objective is of the form Tr(X~'II)
Gradient is of the form Tr (£71V,II) — Tr (Z 7' IIE 1V, %)
To break symmetry between eigenfunctions, use gradient
Tr (L~ "diag(L) ' VoII) — Tr (L™ "triu (Adiag(L) ") V,X)

where L is Cholesky decomposition of IT and A = L™ 'TIIL~ T

To reduce bias in the gradient, use moving average for ¥ and VX

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018

Spectral inference networks
Sanity check: the Schrodinger equation

B(x) =~ (x) - 2

Without bias correction:

HEEEBOERE
I (=] G) B

p WJWwWWWwMWWWWv

0 50

100
Iteration (thousands)

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018

Spectral inference networks

Sanity check: the Schrodinger equation

Ep(x) = — - V2p(x) — L)

2m

With bias correction:

/,,M*’ WY PRy P

150

0 50 100
Iteration (thousands)

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018

Approximating Laplacian eigenmaps

Objective:

Approximating Laplacian eigenmaps

Objective:

k(% x)p(x)p(x)" = (6(x) — o(x))($(x) — p(x)"

If x, x’ are sequential video frames, equivalent to Slow Feature Analysis

Input—output function g(x)

21(x2,X3) 85(x2.%3) 23(x2.%3)

2l @

x3(t)
X3
X3
X3

S /

%

gn x2(D) X2 X2 X2

@ g1(x1,X2) / 2(1x)| F=gs1.x2)

N

£9 Q E 2) —=
X1 X| X1 X1

7=6.52 1n=30.37

Output E‘:»
signal y(t) ™

3

t t

Wiskott and Sejnowski 2002; Sprekeler 2011

Approximating Laplacian eigenmaps

Objective:

k(% x)p(x)p(x)" = (6(x) — o(x))($(x) — p(x)"

If x, x’ are sequential video frames, equivalent to Slow Feature Analysis

Input—output function g(x)

21(x2,X3) 85(x2.%3) 23(x2.%3)

o

x3(t)
X3
X3
X3

~ |

e

%

E 0] Xy X

@ gt [~ plox)] F—ebix)

N

£9 Q E 2) —=
x1(® X1 X1 X

7=6.52 1n=30.37

(0]
©

3

1
7=31.53
signal y(t) ™

t t t

SFA learned layer-by-layer rather than end-to-end

Wiskott and Sejnowski 2002; Sprekeler 2011

Approximating Laplacian eigenmaps

Objective:

k(% x)p(x)p(x)" = (6(x) — o(x))($(x) — p(x)"

If x, x’ are sequential video frames, equivalent to Slow Feature Analysis

Input—output function g(x)

21(x2,X3) 85(x2.%3) 23(x2.%3)

o

x3(t)
X3
X3
X3

~ |

e

%

E 0] Xy X

@ gt [~ plox)] F—ebix)

N

£9 Q E 2) —=
x1(® X1 X1 X

7=6.52 1n=30.37

(0]
©

3

1
7=31.53
signal y(t) ™

t t t

SFA learned layer-by-layer rather than end-to-end

SFA learned feature-by-feature rather than fully online

Wiskott and Sejnowski 2002; Sprekeler 2011

Spectral inference networks on Atari

More interpretable features compared to other approaches when trained
on random policies on Atari games

Successor Features Spectral Inference Networks

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018

Summary

Eigenfunctions can be learned by stochastic gradient descent with func-
tion approximation

Summary

Eigenfunctions can be learned by stochastic gradient descent with func-
tion approximation

Slow feature analysis is a special case of Spectral Inference Networks

Summary

Eigenfunctions can be learned by stochastic gradient descent with func-
tion approximation

Slow feature analysis is a special case of Spectral Inference Networks

While less efficient than standard spectral algorithms, it is far more
scalable

Future challenges in manifold and spectral learning

Can we encode more structural assumptions into the choice of kernel?

Future challenges in manifold and spectral learning

Can we encode more structural assumptions into the choice of kernel?

Can we combine the speed and efficiency of nonparametric methods
with the scalability of parametric methods?

Future challenges in manifold and spectral learning

Can we encode more structural assumptions into the choice of kernel?

Can we combine the speed and efficiency of nonparametric methods
with the scalability of parametric methods?

Can we use curvature in observation space as a learning signal rather
than a post-hoc analysis tool?

Future challenges in manifold and spectral learning

Can we encode more structural assumptions into the choice of kernel?

Can we combine the speed and efficiency of nonparametric methods
with the scalability of parametric methods?

Can we use curvature in observation space as a learning signal rather
than a post-hoc analysis tool?

Can we use the learned representations for challenging downstream
tasks?

Future challenges in manifold and spectral learning

Can we encode more structural assumptions into the choice of kernel?

Can we combine the speed and efficiency of nonparametric methods
with the scalability of parametric methods?

Can we use curvature in observation space as a learning signal rather
than a post-hoc analysis tool?

Can we use the learned representations for challenging downstream
tasks?

Can we better connect spectral learning with probabilistic models?

Acknowledgements

;] j =V]
Michael Bronstein, Xavier Bresson, Joan Bruna, Arthur Szlam, David Barrett,
Kim Stachenfeld, Stig Petersen, Ashish Agarwal, Chris Burgess

Get in touch: pfau@google.com, @pfau on Twitter

Bibliography

M. P. Do Carmo, “Differential Geometry of Curves and Manifolds”, Classic
textbook on differential geometry

R. Kimmel and J. A Sethian, “Computing Geodesic Paths on Manifolds”,
PNAS 95(15): 8431-8435, 1998.

S. Roweis and L. K. Saul, “Nonlinear Dimensionality Reduction by Locally
Linear Embedding”, Science 290(5500): 2323-2326, 2000.

J. B. Tenenbaum, V. De Silva, J. C. Langford, “A Global Geometric Framework
for Nonlinear Dimensionality Reduction”, Science 290(5500): 2319-2323, 2000.

M. Belkin and P. Niyogi, “Laplacian Eigenmaps for Dimensionality Reduction
and Data Representation”, Neural Computation 15(6): 1373-1396, 2002.

T. Mikolov, |. Sutskever, K. Chen, G. S. Corrado and J. Dean, “Distributed
Representation of Words and Phrases and Their Compositionality”, Adv. NIPS:
3111-3119, 2013. Deep learning of high-dimensional word embeddings with
skip-grams

Bibliography

A. Y. Ng, M. |. Jordan, Y. Weiss, “On Spectral Clustering: Analysis and An
Algorithm”, Adv. NIPS: 849-856, 2002.

J. Shi and J. Malik, “Normalized Cuts and Image Segmentation”, IEEE TPAMI
22(8): 888-905, 2000.

C. lonescu, O. Vantzos, C. Sminchisescu, “Matrix Backpropagation for Deep
Networks with Structured Data”, Proc. ICCV: 2965-2973, 2015. Use
normalized cuts as layer inside deep network

Y. Bengio, J.-F. Paiement, P. Vincent, O. Delalleau, N. Le Roux, M. Ouimet,
“Out-of-Sample Extensions for LLE, IsoMap, MDS, Eigenmaps and Spectral
Clustering”, Adv. NIPS: 177-184, 2004.

L. van der Maaten and G. Hinton, “Visualizing Data using t-SNE", JMLR
9(11): 2579-2605, 2008.

R. Hadsell, S. Chopra and Y. LeCun, “Dimensionality Reduction by Learning an
Invariant Mapping”, CVPR: 1735-1742, 2006.

Bibliography

D. Pfau and C. P. Burgess, “Minimally Redundant Laplacian Eigenmaps”,
ICLR Workshops, 2018.

M. Nickel and D. Kiela, “Poincaré Embeddings for Learning Hierarchical
Representations”, Adv. NIPS: 6341-6350, 2017.

M. Nickel and D. Kiela, “Learning Continuous Hierarchies in the Lorentz Model
of Hyperbolic Geometry”, ICML 2018.

S. Bonnabel, “Stochastic Gradient Descent on Riemannian Manifolds”, |IEEE
Trans. Automatic Control 58(9): 2217-2229, 2013.

C. Gulcehre, M. Denil, M. Malinowski, A. Razavi, R. Pascanu, K. M. Hermann,
P. Battaglia, V. Bapst, D. Raposo, A. Santoro, N. de Freitas, “Hyperbolic
Attention Networks”, arXiv:1805.09786, 2018.

I. Higgins, L. Matthey, A. Pal, C. P. Burgess, X. Glorot, M. Botvinick, S.
Mohamed, A. Lerchner, "S-VAE: Learning Basic Visual Concepts with a
Constrained Variational Framework”, Proc. ICLR, 2017.

Bibliography

G. Arvanitidis, L. K. Hansen, S. Hauberg, “Latent Space Oddity: on the
Curvature of Deep Generative Models”, ICLR 2018.

B. Boots, S. M. Siddiqi, G. J. Gordon, “Closing the Learning-Planning Loop
with Predictive State Representations”, [JRR 30(7): 954-966, 2011. Use
spectral learning for planning and control

M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, P. Vandergheynst, “Geometric
deep learning: going beyond Euclidean data”, arXiv:1611.08097, 2016. First
review paper of geometric deep learning

J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, “Spectral networks and locally
connected networks on graphs”, Proc. ICML 2014. First Spectral CNN on
graphs

M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks on
graph-structured data”, arXiv:1506.05163, 2015. Spectral CNN with smooth
multipliers

Bibliography

M. Defferrard, X. Bresson, P. Vandergheynst, “Convolutional neural networks
on graphs with fast localized spectral filtering”, Proc. NIPS 2016. Spectral
CNN with Chebychev polynomial filters (ChebNet)

T. N. Kipf, M. Welling, “Semi-supervised classification with graph
convolutional networks”, arXiv:1609.02907, 2016. Graph convolutional
network (GCN) framework, a simplification of ChebNet

F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, M. M. Bronstein,
“Geometric deep learning on graphs and manifolds using mixture model
CNNs", Proc. CVPR 2017. Mixture Model network (MoNet) framework

D. Boscaini, J. Masci, E. Rodola, M. M. Bronstein, D. Cremers, “Anisotropic
diffusion descriptors”, Computer Graphics Forum 35(2):431-441, 2016.
Anisotropic heat kernels

L. Yi, H. Su, X. Guo, L. Guibas, “SyncSpecCNN: Synchronized Spectral CNN
for 3D Shape Segmentation”, Proc. CVPR 2017. Spectral transformer
networks

Bibliography

Y. LeCun, B. Boser, J. S. Denker, R. E. Howard, W. Hubbard, L. D. Jackel,
“Backpropagation applied to handwritten ZIP code recognition”, Neural
Computation 1(4):541-551, 1989. Classical Euclidean CNN

D. Pfau, S. Petersen, A. Agarwal, D. Barrett and K. Stachenfeld, “Spectral
Inference Networks: Unifying Spectral Methods with Deep Learning”, arXiv:
1806.02215, 2018.

L. Wiskott and T. J. Sejnowski, “Slow Feature Analysis: Unsupervised Learning
of Invariances”, Neural Computation 14(4): 715-770, 2002.

H. Sprekeler, “On the Relation of Slow Feature Analysis and Laplacian
Eigenmaps”, Neural Computation 23(12): 3287-3302, 2011. Shows
equivalence of SFA and Laplacian eigenmaps

	fd@rm@0:
	fd@rm@1:
	fd@rm@2:
	fd@rm@3:
	fd@rm@4:

