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What this tutorial is about

Designing models for graph- or manifold-structured input



What this tutorial is about

Designing models for data with latent graph- or manifold-structure



What this tutorial is about

Discovering latent manifold structure in data



What this tutorial is not about

F(θ) = Ex
[
∇θlogp(x|θ)∇θlogp(x|θ)T

]
θt+1 ← θt + F−1∇θlogp(xt|θt)

Information geometry - the manifold structure of parameter space



Spectral Learning

Any learning algorithm where the usual tools (SGD, EM, MCMC...) are
replaced with eigendecomposition or SVD

Solves a nonconvex optimization exactly!

A = ΦΛΦT

min
Φ

ΦTΦ=I

Tr(ΦTAΦ)

Functions on Rn can be decomposed with Fourier basis. Spectral
analysis generalizes Fourier analysis to manifolds and graphs
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What is this good for?

Tenenbaum, De Silva and Langford 2000



What is this good for?

Boots, Siddiqi and Gordon 2011
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Part I

Theory



Part Ia

Graph Theory (in three slides)



Graphs

Weighted undirected graph G with vertices
V = {1, . . . , n}, edges E ⊆ V × V and edge
weights wij ≥ 0 for (i, j) ∈ E

Functions over the vertices
L2(V) = {f : V → R}

Inner product

〈f, g〉L2(V) =
∑
i∈V

fi gi = f>g

wij
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Shortest paths on graphs

Dijkstra’s Algorithm: Find sequence
i0, . . . , ik ∈ V from source i0 to sink ik that
minimizes

∑
t witit+1

Create queue of active nodes and
shortest-path tree, starting from source

Remove active node i closest to source,
compute distance to neighbors
dist[j] = dist[i] + wij .

If dist[j] is less than before, set i as parent
node of j in shortest path tree.

Stop when sink is reached. Path to the root
of the tree is the shortest path.

Complexity: O(|E|+ |V|log|V|)

i0

ik
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Graph Laplacian

Unnormalized Laplacian ∆ : L2(V)→ L2(V)

(∆f)i =
∑

j:(i,j)∈E

wij(fi − fj)

(up to scale) difference between f and its
local average

Represented as a positive semi-definite n× n
matrix ∆ = D−W where W = (wij) and
D = diag(

∑
j 6=i wij)

Dirichlet energy of f

‖f‖2G =
1

2

n∑
ij=1

wij(fi − fj)2 = f>∆f

fi

fj
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Graph Laplacian

Unnormalized Laplacian ∆ : L2(V)→ L2(V)

(∆f)i =
∑
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wij(fi − fj)

(up to scale) difference between f and its
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2
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fi

fj

measures the smoothness of f (how fast it changes locally)



Part Ib

Manifolds and Differential Geometry



Riemannian manifolds

Manifold X = locally flat space (no
non-differentiable corners)

Tangent plane TxX = local Euclidean
representation of manifold X around x

Riemannian metric describes the local
intrinsic structure at x

〈·, ·〉TxX : TxX × TxX → R

Scalar fields f : X → R and vector
fields F : X → TX

Inner products

〈f, g〉L2(X ) =

∫
X
f(x)g(x)dx

〈F,G〉L2(TX ) =

∫
X
〈F (x), G(x)〉TxXdx

xTxX

X
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Shortest paths on manifolds

Curve γ(·) : [0, 1]→ X = smooth path
along manifold

Velocity γ̇(·) : [0, 1]→ TxX = local
direction of change along the curve

Curve energy integrates length at constant
velocity

S[γ] =

∫ 1

0

dt
〈

˙γ(t), ˙γ(t)
〉
Tγ(t)X

Geodesic shortest curve between points

γ∗ = min
γ

γ(0)=x0

γ(1)=x1

S[γ]

γ(t)

γ̇(t)

γ(0)

γ(1)
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Shortest paths on manifolds

Curve γ(·) : [0, 1]→ X = smooth path
along manifold

Velocity γ̇(·) : [0, 1]→ TxX = local
direction of change along the curve

Curve energy integrates length at constant
velocity

S[γ] =

∫ 1

0
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Geodesic shortest curve between points

γ∗ = min
γ

γ(0)=x0

γ(1)=x1

S[γ]

γ(t)

γ̇(t)

γ(0)
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Geodesic is a path such that the velocities are locally parallel



Parallel Transport

Connection Γx(F,G): infinitesimal
change to vector F ∈ TxX that keeps
it locally parallel when moved in the
direction G ∈ TxX .

Parallel transport Sequence of vectors
F (t) ∈ Tγ(t)X along curve γ that are
all locally parallel.

Ḟ (t) + Γγ(t)(F (t), γ̇(t)) = 0

G

F

F − Γ(F,G)
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Geodesic equation

Parallel transport:

Ḟ (t) + Γγ(t)(F (t), γ̇(t)) = 0

The geodesic equation:

γ̈(t) + Γγ(t)(γ̇(t), γ̇(t)) = 0

A geodesic is a curve such that if you parallel transport its velocity at a
point along itself, the vector always remains tangent to the curve
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Geodesic equation

Parallel transport:

Ḟ (t) + Γγ(t)(F (t), γ̇(t)) = 0

The geodesic equation:

γ̈(t) + Γγ(t)(γ̇(t), γ̇(t)) = 0

A geodesic is a curve such that if you parallel transport its velocity at a
point along itself, the vector always remains tangent to the curve

Solve numerically on meshes with fast marching method

Kimmel and Sethian 1998



Manifold Laplacian

Laplacian ∆ : L2(X )→ L2(X )

∆f(x) = −div∇f(x)

where gradient ∇ :L2(X )→L2(TX )
and divergence div :L2(TX )→L2(X )
are adjoint operators

〈F,∇f〉L2(TX ) = 〈−divF, f〉L2(X )

Laplacian is self-adjoint

〈∆f, f〉L2(X ) = 〈f,∆f〉L2(X )

Continuous limit of graph Laplacian
under some conditions

Dirichlet energy of f

〈∇f,∇f〉L2(TX ) =

∫
X
f(x)∆f(x)dx

x

F

div∇f(x)
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Part Ic

Spectral Theory for
Graphs and Manifolds



Orthogonal bases on graphs

Find the smoothest orthogonal basis {φ1, . . . , φn} ⊆ L2(V)

min
φ1

EDir(ψ1) s.t. ‖φ1‖ = 1

min
φk

EDir(ψk) s.t. ‖φk‖ = 1, k = 2, 3, . . . n

φk ⊥ span{φ1, . . . , φk−1}

Solution: Φ = Laplacian eigenvectors
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Laplacian eigenvectors and eigenvalues

Eigendecomposition of a graph Laplacian

∆ = ΦΛΦ>

where Φ = (φ1, . . . ,φn) are orthogonal eigenvectors (Φ>Φ = I) and
Λ = diag(λ1, . . . , λn) the corresponding non-negative eigenvalues
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Eigendecomposition of a graph Laplacian

∆ = ΦΛΦ>

where Φ = (φ1, . . . ,φn) are orthogonal eigenvectors (Φ>Φ = I) and
Λ = diag(λ1, . . . , λn) the corresponding non-negative eigenvalues

−π 0 +π
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0
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First eigenfunctions of 1D Euclidean Laplacian
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Laplacian eigenvectors and eigenvalues

Eigendecomposition of a graph Laplacian

∆ = ΦΛΦ>

where Φ = (φ1, . . . ,φn) are orthogonal eigenvectors (Φ>Φ = I) and
Λ = diag(λ1, . . . , λn) the corresponding non-negative eigenvalues

0

max

min

φ1 φ2 φ3 φ4

First eigenfunctions of a manifold Laplacian



Fourier analysis on Euclidean spaces

A function f : [−π, π]→ R can be written as a Fourier series

f(x) =
∑
k≥0

1

2π

∫ π

−π
f(x′)e−ikx

′
dx′eikx

f̂1 f̂2 f̂3= + + + . . .

Fourier basis = Laplacian eigenfunctions: − d2

dx2 e
ikx = k2eikx
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Fourier analysis on graphs and manifolds

A function f : V → R can be written as Fourier series

f =

n∑
k=1

〈f, φk〉L2(V)︸ ︷︷ ︸
f̂k

φk

Fourier basis = Laplacian eigenfunctions: ∆φk = λkφk

λk = frequency



Fourier analysis on graphs and manifolds

A function f : V → R can be written as Fourier series

f =

n∑
k=1

〈f, φk〉L2(V)︸ ︷︷ ︸
f̂k

φk

Fourier basis = Laplacian eigenfunctions: ∆φk = λkφk

λk = frequency

0

max

min

φ1 φ2 φ3 φ4

First Fourier basis elements of a manifold.



Summary

Manifolds and graphs are natural extensions of vector spaces



Summary

Manifolds and graphs are natural extensions of vector spaces

Lines can be generalized to shortest paths and geodesics



Summary

Manifolds and graphs are natural extensions of vector spaces

Lines can be generalized to shortest paths and geodesics

The Laplacian operator defines smoothness of a function



Summary

Manifolds and graphs are natural extensions of vector spaces

Lines can be generalized to shortest paths and geodesics

The Laplacian operator defines smoothness of a function

Spectral decompositions generalize Fourier analysis



Part II

The Geometry of Data



Part IIa

Classic Manifold Learning:
A Time Before Deep Learning



Manifold Learning

Learn nonlinear embedding of data
into low dimensional space that
preserves distances locally

The data itself does not have to be
manifold structured

The dataset has some latent
manifold structure

Roweis and Saul 2000
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IsoMap

Compute nearest neighbors graph of
dataset

Construct matrix D ∈ Rn×n of geodesic
distances between pairs of data by
Dijkstra’s algorithm

Embed data in low dimensional space with
multidimensional scaling (MDS):

B = −1

2

(
I− 1

n
11T

)
D

(
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Laplacian eigenmaps

Compute weighted nearest neighbors
graph of dataset

Construct graph Laplacian matrix
∆ = D−W

λ1, . . . , λk, φ1, . . . , φk bottom eigenvalues
and eigenvectors of ∆

Embedding: (φ2, . . . , φk)

Belkin and Niyogi 2002; Mikolov, Sutskever, Chen, Corrado and Dean 2013



Spectral clustering

Same embedding as Laplacian eigenmaps, but use embedding vectors for
clustering instead of visualization

Spectral Clustering

Other

Ng, Jordan and Weiss 2002



Normalized cuts

Minimum (normalized) cut problem:
partition vertices into sets A,B ⊂ V

NCut(y) =

∑
i∈A,j∈B wij∑
i∈A,j∈V wij

+

∑
i∈B,j∈A wij∑
i∈B,j∈V wij

Relax optimization from binary vectors to
continuous vectors. Solution is bottom
eigenfunctions of graph Laplacian.

A B

yi = +1

yi = −1

Shi and Malik 2000
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Minimum (normalized) cut problem:
partition vertices into sets A,B ⊂ V

NCut(y) =

∑
i∈A,j∈B wij∑
i∈A,j∈V wij

+

∑
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i∈B,j∈V wij

=
yT∆y

yTy

Relax optimization from binary vectors to
continuous vectors. Solution is bottom
eigenfunctions of graph Laplacian.

Used in image segmentation where each
vertex is a pixel
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yi = +1

yi = −1

Shi and Malik 2000



Normalized cuts

Minimum (normalized) cut problem:
partition vertices into sets A,B ⊂ V

NCut(y) =

∑
i∈A,j∈B wij∑
i∈A,j∈V wij

+

∑
i∈B,j∈A wij∑
i∈B,j∈V wij

=
yT∆y

yTy

Relax optimization from binary vectors to
continuous vectors. Solution is bottom
eigenfunctions of graph Laplacian.

Can be incorporated as layer inside a deep
network by backpropagating through
eigendecomposition

A B

yi = +1

yi = −1

Shi and Malik 2000; Ionescu, Vantzos and Sminchisescu 2015



Inference on held-out data

A common pattern:

Construct Gram matrix from kernel k(x,x′)

M =


k(x1,x1) k(x1,x2) . . . k(x1,xn)
k(x2,x1) k(x2,x2) . . . k(x2,xn)

...
...

. . .
...

k(xn,x1) k(xn,x2) . . . k(xn,xn)



Use top/bottom eigenvectors of Gram matrix as embedding

Works for fixed dataset x1, . . . ,xn -
but what is the embedding vector for a new data point x′?
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Inference on held-out data

Assume data drawn x1, . . . ,xn ∼ p(x). Gram matrix is approximation
to linear operator:

1

n
M


f(x1)
f(x2)

...
f(xn)


i

=
1

n

∑
j

k(xi,xj)f(xj) ≈ Ep(x)[k(xi,x)f(x)]

= Kp[f ](xi)

Bengio, Paiement, Vincent et al 2004
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Inference on held-out data

Assume data drawn x1, . . . ,xn ∼ p(x). Gram matrix is approximation
to linear operator:

1

n
M


f(x1)
f(x2)

...
f(xn)


i

=
1

n

∑
j

k(xi,xj)f(xj) ≈ Ep(x)[k(xi,x)f(x)]

= Kp[f ](xi)

From eigenvalues λ1, . . . , λk and eigenvectors φ1, . . . , φk of M, can
approximate eigenfunction of Kp with Nyström method:

φk(x′) ∝
∑
i

φkik(xi,x
′)

Bengio, Paiement, Vincent et al 2004



Trade-offs of manifold learning

Exactly solvable by eigendecomposition
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Trade-offs of manifold learning

Exactly solvable by eigendecomposition

Data efficient (works with O(1000) data points)

Unsupervised learning without a generative model

Learning scales as O(nlogn) with size of training data

Inference scales as O(n) with size of training data

Performance degrades for noisy or clustered data

Embeddings collapse on more complex data

Other methods have become popular for low-dimensional visualization -
especially t-SNE (Maaten and Hinton 2008)



Collapsed embeddings

Hadsell, Chopra and LeCun 2006



Improving spectral embeddings

Bottom eigenfunctions of graph Laplacian of evenly-scaled grid are
natural coordinates

Bottom eigenfunctions of unevely-scaled grid are not

Eigenfunctions must be orthogonal, but can still be predictable, e.g.
sin(2x) and sin(x) and cos(x).

Instead of using lowest eigenfunctions as embedding, use lowest
eigenfunctions that are unpredictable from lower eigenfunctions

Pfau and Burgess 2018
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Minimally redundant Laplacian eigenmaps

After adding eigenfunctions φ1, . . . , φd to
embedding, evaluate φd+1 as candidate.

If value of φd+1 at point i can be predicted
from nearest neighbors of i in φ1, . . . , φd,
eigenfunction is too predictable

Pfau and Burgess 2018
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Minimally redundant Laplacian eigenmaps

NORB: Model dataset for studying invariance in object recognition

Pfau and Burgess 2018; LeCun, Huang and Bottou 2005



Minimally redundant Laplacian eigenmaps

NORB: Model dataset for studying invariance in object recognition

Consider a single object under different lighting and rotation

Pfau and Burgess 2018; LeCun, Huang and Bottou 2005



Minimally redundant Laplacian eigenmaps

Pfau and Burgess 2018
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With filtering by redundancy, all variation captured by 6 eigenfunctions
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Minimally redundant Laplacian eigenmaps

With filtering by redundancy, all variation captured by 6 eigenfunctions
Works with less than 1000 points!

Pfau and Burgess 2018



Minimally redundant Laplacian eigenmaps

Disentangling VAEs learn the dimension but not the topology

Laplacian eigenmaps learns the topology but misses some dimensions

Pfau and Burgess 2018
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β-VAE Laplacian eigenmaps

Disentangling VAEs learn the dimension but not the topology

Laplacian eigenmaps learns the topology but misses some dimensions

Pfau and Burgess 2018
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Trade-offs of manifold learning

Exactly solvable by eigendecomposition

Data efficient (works with O(1000) data points)

Unsupervised learning without a generative model

Learning scales as O(nlogn) with size of training data

Inference scales as O(n) with size of training data

Performance degrades for noisy or clustered data

Collapsed embeddings can be fixed by choice of eigenvector

Can discover topology of data without prior assumptions



Part IIb

Embedding Hierarchies in
Hyperbolic Spaces



Hierarchical data

Some data can be embedded uniformly in flat space



Hierarchical data

What about data with hierarchical structure?



Hierarchical data

b0

b1

b2

b3

rN−1

(2r)N−1

(3r)N−1

(4r)N−1

Tree with branching factor b has b` nodes at layer ` - exponential growth

Area of sphere in RN with radius r grows as rN−1 - polynomial growth



Hierarchical data

Idea: embed nodes in hierarchy in hyperbolic space instead of flat space



Hyperbolic geometry

Hyperbolic space: manifold with constant
negative curvature

Angles of triangle add to less than 180
degrees

Surface area of spheres grows exponentially!

Many possible models of hyperbolic space
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The Poincaré ball

Maps hyperbolic space to open ball BN

Metric: 〈u,v〉TxP =
(

2
1−xTx

)2
uTv

Geodesics: Circles that are orthogonal to
boundary of ball

Distances:
d(u,v) = arcosh

(
1 + 2 ||u−v||2

(1−||u||2)(1−||v||2)

)

Nickel and Kiela 2017
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Poincaré embeddings for learning hierarchical
representation

Given edges E from a graph, find an embedding ui for vertex i that
minimizes: ∑

i,j∈E
log

e−d(ui,uj )∑
j′ st ij′ /∈E e

−d(ui,uj′ )

Nickel and Kiela 2017
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log

e−d(ui,uj )∑
j′ st ij′ /∈E e

−d(ui,uj′ )

State of the art results on link reconstruction and link prediction on
WordNet noun dataset

Nickel and Kiela 2017



Poincaré embeddings for learning hierarchical
representation

Given edges E from a graph, find an embedding ui for vertex i that
minimizes: ∑

i,j∈E
log

e−d(ui,uj )∑
j′ st ij′ /∈E e

−d(ui,uj′ )

State of the art results on graded lexical entailment on HyperLex

Nickel and Kiela 2017



Trade-offs of Poincaré model

Geodesics are simple
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Trade-offs of Poincaré model

Geodesics are simple

Metric is diagonal

Gradients of metric are unstable near boundary



The Lorentz model

Maps N -dim hyperbolic space to surface in
RN+1

〈u,v〉L = −u0v0 +
∑N+1
i=1 uivi

HN = {x ∈ RN+1 : 〈x,x〉L = −1, x0 > 0}

Metric: 〈u,v〉TxL = 〈u,v〉L
Geodesics: starting at x and going in
direction v, ||v||L = 1

expx(tv) = cosh(t)x + sinh(t)v

Projection: maps vectors onto tangent space:

projx(u) = u + 〈x,u〉L

Nickel and Kiela 2018
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Riemannian SGD

Scale Euclidean gradient by inverse metric:

h = M−1
x ∇f(x)

Project gradient onto tangent space:

gradf(x) = proj(h)

Follow geodesic along Riemannian gradient:

x← expx(−ηgradf(x))

Bonnabel 2013
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Learning continuous hierarchies in the Lorentz model

Significant improvement over Poincaré, especially in low dimensions

Nickel and Kiela 2018



Hyperbolic Attention Networks

Imposes hyperbolic geometry on activations of deep network with attention

Gulcehre, Denil, Malinowski et al 2018



Part IIc

Analyzing the Geometry of
Deep Generative Models



What is the shape of latent space?

Are straight lines in latent space really straight?

What is the right notion of distance in latent space?

Higgins, Matthey, Pal et al 2017
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Latent space metric

z

∆z1
∆z2

Jz∆z1 Jz∆z2

Deep generative model with decoder f(z)

Manifold X generated by f has tangent space TzX = span(Jz) where
Jz is Jacobian of f at z

Use `2 metric in observation space as metric in latent space:

〈∆z1,∆z2〉TzX = ∆zT1 JTz Jz∆z2 = ∆zT1 Mz∆z2

Arvanitidis, Hansen and Hauberg 2018
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Geodesic equation

How do we derive the geodesic equation from the introduction:
γ̈ = −Γγ(t) (γ̇(t), γ̇(t))

γ∗ = min
γ
S[γ] = min

γ

∫ 1

0

dtL(γ, γ̇, t)

= min
γ

∫ 1

0

dt
〈

˙γ(t), ˙γ(t)
〉
Tγ(t)X

= min
γ

∫ 1

0

dt
∑
ij

Mij
γ(t)γ̇i(t)γ̇j(t)

Euler-Lagrange equation:

∂L

∂γ∗
=

d

dt

∂L

∂γ̇∗

Exercise: Derive the left and right side of the Euler-Lagrange equation
for L(γ, γ̇, t) =

∑
ij Mij

γ(t)γ̇i(t)γ̇j(t)
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Geodesic equation

∂L

∂γi
=
∑
jk

∂Mjk
γ(t)

∂γi
γ̇k(t)γ̇j(t)

d

dt

∂L

∂γ̇i
=

d

dt

2
∑
j

Mij
γ(t)γ̇j(t)

 = 2
∑
j

[
∂Mij

γ(t)

∂t
γ̇j(t) + Mij

γ(t)γ̈j(t)

]

= 2
∑
j

[∑
k

∂Mij
γ(t)

∂γk
γ̇k(t)γ̇j(t) + Mij

γ(t)γ̈j(t)

]
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Γikj (x) are the parameters of the Levi-Civita connection:

unique connection induced by the metric



The geodesics of deep generative models

Classification from latent representations is better

Arvanitidis, Hansen and Hauberg 2018



The geodesics of deep generative models

Classification from latent representations is better

Transitions along geodesics are smoother

Arvanitidis, Hansen and Hauberg 2018



Summary

Differential geometry and spectral theory are a powerful suite of tools
for thinking about the geometry of data

Straight lines generalize to geodesics, which are defined from the local
metric structure

The spectrum of the Laplacian generalizes Fourier analysis to graphs
and manifolds

Classic manifold learning uses spectral decompositions to map data
manifolds in high-dim space to flat space

Hierarchical data is naturally mapped to hyperbolic space

The latent space of deep generative models is better understood as
being curved
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Part III

Spectral Deep Learning



Part IIIa

Convolutions on
Graphs and Manifolds



Key properties of CNNs

Convolutional (Translation invariance)

LeCun et al. 1989
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Key properties of CNNs

Convolutional (Translation invariance)

Scale Separation (Compositionality)

Filters localized in space (Deformation Stability)

O(1) parameters per filter (independent of input image size n)

O(n) complexity per layer (filtering done in the spatial domain)

O(log n) layers in classification tasks

LeCun et al. 1989



CNNs and Euclidean Geometry

CNNs are defined over Euclidean domains or Grids Ω. Two fundamental
properties:

Translation Invariance (yielding convolutions).

Multiscale structure (yielding downsampling).

Inductive bias that exploits stationarity and deformation stability of
many tasks.



CNNs and Euclidean Geometry

CNNs are defined over Euclidean domains or Grids Ω. Two fundamental
properties:

Translation Invariance (yielding convolutions).

Multiscale structure (yielding downsampling).

Inductive bias that exploits stationarity and deformation stability of
many tasks.

Roadmap: extend CNNs to non-Euclidean geometries by replacing
filtering and pooling by appropriate operators



Convolution: Euclidean space

Given two functions f, g : [−π, π]→ R their convolution is a function

(f ? g)(x) =

∫ π

−π
f(x′)g(x− x′)dx′

Shift-invariance: f(x− x0) ? g(x) = (f ? g)(x− x0)

Convolution theorem: Fourier transform diagonalizes the convolution operator

⇒ convolution can be computed in the Fourier domain as

(̂f ? g) = f̂ · ĝ

Efficient computation using FFT
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Convolution Theorem

Convolution of two vectors f = (f1, . . . , fn)> and g = (g1, . . . , gn)>

f ? g =


g1 g2 . . . . . . gn
gn g1 g2 . . . gn−1
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. . .

. . .
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︸ ︷︷ ︸

 f1
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fn
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Convolution Theorem

Convolution of two vectors f = (f1, . . . , fn)> and g = (g1, . . . , gn)>
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g3 g4 . . . g1 g2
g2 g3 . . . . . . g1
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...
fn



= Φ
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...
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Spectral convolution

Spectral convolution of f ,g ∈ L2(V) can be defined by analogy

f ? g =
∑
k≥1

〈f ,φk〉L2(V)〈g,φk〉L2(V)

︸ ︷︷ ︸
product in the Fourier domain

φk

︸ ︷︷ ︸
inverse Fourier transform

In matrix-vector notation
f ? g =

Not shift-invariant! (G has no circulant structure)

Filter coefficients depend on basis φ1, . . . ,φn
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Effect of spectral convolution

Function f



Effect of spectral convolution

‘Edge detecting’ spectral filter ΦGΦ>f



Effect of spectral convolution

Same spectral filter, different basis ΨGΨ>f
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Effect of spectral convolution

High-frequency Laplacian eigenvector φ50
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Part IIIb

Spectral Graph Convolutional
Neural Networks



Spectral graph CNN

Convolution expressed in the spectral domain

g = ΦWΦ>f

where W is n× n diagonal matrix of learnable spectral filter coefficients

Filters are basis-dependent ⇒ does not generalize across graphs!

Bruna, Zaremba, Szlam, LeCun 2014
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Spectral graph CNN

Convolution expressed in the spectral domain

g = ΦWΦ>f

where W is n× n diagonal matrix of learnable spectral filter coefficients

Filters are basis-dependent ⇒ does not generalize across graphs!

O(n) parameters per layer

O(n2) computation of forward and inverse Fourier transforms Φ>,Φ
(no FFT on graphs)

No guarantee of spatial localization of filters

Bruna, Zaremba, Szlam, LeCun 2014



Localization and Smoothness

Vanishing moments: In the Euclidean setting∫ +∞

−∞
|x|2k|f(x)|2dx =

∫ +∞

−∞

∣∣∣∣∣∂kf̂(ω)

∂ωk

∣∣∣∣∣
2

dω

Localization in space = smoothness in frequency domain

Bruna, Zaremba, Szlam, LeCun 2014; Henaff, Bruna, LeCun 2015
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Localization and Smoothness

Vanishing moments: In the Euclidean setting∫ +∞

−∞
|x|2k|f(x)|2dx =

∫ +∞

−∞

∣∣∣∣∣∂kf̂(ω)

∂ωk

∣∣∣∣∣
2

dω

Localization in space = smoothness in frequency domain

Parametrize the filter using a smooth spectral transfer function τ(λ)

Application of the parametric filter with learnable parameters α

τα(∆)f = Φ

 τα(λ1)
. . .

τα(λn)

Φ>f

Bruna, Zaremba, Szlam, LeCun 2014; Henaff, Bruna, LeCun 2015



Localization and smoothness

0 λ500

−1

+1

frequency

τ
(λ
)

Non-smooth spectral filter (delocalized in space)
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Localization and smoothness

0 λ500

−1

+1

frequency

τ
(λ
)

Smooth spectral filter (localized in space)
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Spectral graph CNN with polynomial filters (ChebNet)

Represent spectral transfer function as a polynomial or order r

τα(λ) =

r∑
j=0

αjλ
j

where α = (α0, . . . , αr)
> is the vector of filter parameters

O(1) parameters per layer

Defferrard, Bresson, Vandergheynst 2016; Kipf, Welling 2016
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Spectral graph CNN with polynomial filters (ChebNet)

Represent spectral transfer function as a polynomial or order r

τα(λ) =

r∑
j=0

αjλ
j

where α = (α0, . . . , αr)
> is the vector of filter parameters

O(1) parameters per layer

Filters have guaranteed r-hops support

No explicit computation of Φ>,Φ ⇒ O(nr) computational com-
plexity

Defferrard, Bresson, Vandergheynst 2016; Kipf, Welling 2016



Example: citation networks

Figure: Monti, Boscaini, Masci, Rodolà, Svoboda, Bronstein 2017



Example: citation networks

Method Cora1 PubMed2

Manifold Regularization3 59.5% 70.7%
Semidefinite Embedding4 59.0% 71.1%
Label Propagation5 68.0% 63.0%
DeepWalk6 67.2% 65.3%
Planetoid7 75.7% 77.2%
Spectral graph CNN8 81.6% 78.7%

Classification accuracy of different methods on citation network datasets

Data: 1,2Sen et al. 2008; methods: 3Belkin et al. 2006; 4Weston et al. 2012; 5Zhu et
al. 2003; 6Perozzi et al. 2014; 7Yang et al. 2016; 8Kipf, Welling 2016 (simplification
of ChebNet)
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Limitations of spectral graph CNNs

Poor generalization across domains with different shapes unless kernels
are localized

(can be remedied to some extent with spectral transformer
networks1)

Spectral kernels are isotropic due to rotation invariance of the Laplacian

1Yi, Su, Guo, Guibas 2017
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Only rotationally-symmetric kernels!

Example of Chebyshev filters (order r = 7) on Euclidean grid



Anisotropic kernels on manifolds

Scale t Orientation θ Elongation α

Examples of anisotropic heat kernels on a manifold

Boscaini, Masci, Rodolà, Bronstein, Cremers 2016
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Limitations of spectral graph CNNs

Poor generalization across domains with different shapes unless kernels
are localized (can be remedied to some extent with spectral transformer
networks1)

Spectral kernels are isotropic due to rotation invariance of the Laplacian
(on manifolds, anisotropic Laplacians can be constructed2)

Only undirected graphs, as symmetry of the Laplacian matrix is assumed

1Yi, Su, Guo, Guibas 2017; 2Boscaini, Masci, Rodolà, Bronstein, Cremers 2016



Limitations of spectral graph CNNs

Poor generalization across domains with different shapes unless kernels
are localized (can be remedied to some extent with spectral transformer
networks1)

Spectral kernels are isotropic due to rotation invariance of the Laplacian
(on manifolds, anisotropic Laplacians can be constructed2)

Only undirected graphs, as symmetry of the Laplacian matrix is assumed

1Yi, Su, Guo, Guibas 2017; 2Boscaini, Masci, Rodolà, Bronstein, Cremers 2016



Different formulations of non-Euclidean CNNs

Spectral domain Spatial domain

Geometric Deep Learning Tutorial: NIPS 2017
https://vimeo.com/248497329
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Summary

The convolution theorem allows us to generalize convolution operators
from grids to graphs

Naive spectral graph CNNs are unstable to deformation

Forcing the filter spectrum to be smooth stabilizes and localizes filters

Pooling operation can be replaced with graph pooling



Summary

The convolution theorem allows us to generalize convolution operators
from grids to graphs

Naive spectral graph CNNs are unstable to deformation

Forcing the filter spectrum to be smooth stabilizes and localizes filters

Pooling operation can be replaced with graph pooling



Summary

The convolution theorem allows us to generalize convolution operators
from grids to graphs

Naive spectral graph CNNs are unstable to deformation

Forcing the filter spectrum to be smooth stabilizes and localizes filters

Pooling operation can be replaced with graph pooling



Summary

The convolution theorem allows us to generalize convolution operators
from grids to graphs
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Forcing the filter spectrum to be smooth stabilizes and localizes filters

Pooling operation can be replaced with graph pooling



Part IIIc

Inference in Spectral Learning
with Deep Networks



Manifold learning (again)

Basic pattern:

Construct Gram matrix from kernel k(x,x′)

M =


k(x1,x1) k(x1,x2) . . . k(x1,xn)
k(x2,x1) k(x2,x2) . . . k(x2,xn)

...
...

. . .
...

k(xn,x1) k(xn,x2) . . . k(xn,xn)



Use top/bottom eigenvectors of Gram matrix as embedding

Use Nyström approximation for inference on held-out data:
φk(x′) ∝

∑
i φkik(xi,x

′)

Why not just learn parameterized φk(x) directly?
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Deep learn all the things

A successful strategy: take a branch of machine learning and fit the
model using a deep network

Variational Bayes: Variational autoencoders

Reinforcement Learning: Deep RL (DQN, A3C, PPO, TRPO, DDPG...)

Spectral Learning:
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Variational Bayes: Variational autoencoders
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Deep learn all the things

A successful strategy: take a branch of machine learning and fit the
model using a deep network

Variational Bayes: Variational autoencoders

Reinforcement Learning: Deep RL (DQN, A3C, PPO, TRPO, DDPG...)

Spectral Learning: Spectral Inference Networks

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018



Trade-offs of manifold learning

Exactly solvable by eigendecomposition

Data efficient (works with O(1000) data points)

Unsupervised learning without a generative model

Learning scales as O(nlogn) with size of training data

Inference scales as O(n) with size of training data

Performance degrades for noisy or clustered data

Collapsed embeddings can be fixed by choice of eigenvector

Can discover topology of data without prior assumptions



Trade-offs of manifold learning

Exactly solvable by eigendecomposition

Data efficient (works with O(1000) data points)

Unsupervised learning without a generative model

Learning scales as O(nlogn) with size of training data

Inference scales as O(n) with size of training data

Performance degrades for noisy or clustered data

Collapsed embeddings can be fixed by choice of eigenvector

Can discover topology of data without prior assumptions

Spectral inference networks trade the first two for the second two



Eigendecomposition as optimization

Rayleigh quotient has top eigenvector as argmax:

max
φ

φTAφ

φTφ

Generalize to multiple eigenvectors (up to rotation):

max
Φ

Tr
(

(ΦTΦ)−1ΦTAΦ
)

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018
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φTφ

Generalize to multiple eigenvectors (up to rotation):

max
Φ

Tr
(

(ΦTΦ)−1ΦTAΦ
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Φ
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(∑
i

φTi φi

)−1∑
ij

Aijφ
T
i φj



Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018



Eigendecomposition as optimization

Rayleigh quotient has top eigenvector as argmax:

max
φ

φTAφ

φTφ

Generalize to multiple eigenvectors (up to rotation):

max
Φ

Tr
(

(ΦTΦ)−1ΦTAΦ
)

max
φ

Tr
(
Ex

[
φ(x)φ(x)T

]−1 Ex,x′
[
k(x,x′)φ(x)φ(x′)T

])
Replace Aij with k(x,x′) and sums with expectations

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018



Eigendecomposition as optimization

Most machine learning:
max
θ

Ex[fθ(x)]

Empirical gradient in unbiased

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018
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Eigendecomposition as optimization

Most machine learning:
max
θ

Ex[fθ(x)]

Empirical gradient in unbiased

Spectral inference networks:

max
θ

Tr
(
Ex

[
φθ(x)φθ(x)T

]−1 Ex,x′
[
k(x,x′)φθ(x)φθ(x

′)T
])

Empirical gradient is biased

Solution: use moving average of gradient of φθφ
T
θ term

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018



Spectral inference network gradients

Objective is of the form Tr(Σ−1Π)

Gradient is of the form Tr
(
Σ−1∇θΠ

)
− Tr

(
Σ−1ΠΣ−1∇θΣ

)
To break symmetry between eigenfunctions, use gradient

Tr
(
L−Tdiag(L)−1∇θΠ

)
− Tr

(
L−T triu

(
Λdiag(L)−1

)
∇θΣ

)
where L is Cholesky decomposition of Π and Λ = L−1ΠL−T

To reduce bias in the gradient, use moving average for Σ and ∇θΣ

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018
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Spectral inference network gradients

Objective is of the form Tr(Σ−1Π)

Gradient is of the form Tr
(
Σ−1∇θΠ

)
− Tr

(
Σ−1ΠΣ−1∇θΣ

)
To break symmetry between eigenfunctions, use gradient
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(
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)
− Tr

(
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(
Λdiag(L)−1

)
∇θΣ

)
where L is Cholesky decomposition of Π and Λ = L−1ΠL−T

To reduce bias in the gradient, use moving average for Σ and ∇θΣ
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Spectral inference networks

Sanity check: the Schrödinger equation

Eψ(x) = − ~
2m
∇2ψ(x)− ψ(x)

|x|

Without bias correction:
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Approximating Laplacian eigenmaps

Objective:

k(x,x′)φ(x)φ(x)T = (φ(x)− φ(x′))(φ(x)− φ(x′))T

If x, x′ are sequential video frames, equivalent to Slow Feature Analysis

SFA learned layer-by-layer rather than end-to-end

SFA learned feature-by-feature rather than fully online

Wiskott and Sejnowski 2002; Sprekeler 2011



Spectral inference networks on Atari

More interpretable features compared to other approaches when trained
on random policies on Atari games

Pfau, Petersen, Agarwal, Barrett and Stachenfeld 2018
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Can we combine the speed and efficiency of nonparametric methods
with the scalability of parametric methods?

Can we use curvature in observation space as a learning signal rather
than a post-hoc analysis tool?

Can we use the learned representations for challenging downstream
tasks?

Can we better connect spectral learning with probabilistic models?
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